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We performed the first simultaneous extraction of the six leading-order proton polarizabilities. We
reached this milestone thanks to both new high-quality experimental data and an innovative bootstrap-
based fitting method. These new results provide a self-consistent and fundamental benchmark for all future
theoretical and experimental polarizability estimates.
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Introduction.—Understanding the hadron structure in the
nonperturbative regime of quantum chromodynamics
(QCD) is one of the major challenges of modern physics.
We can classify hadrons in terms of their global properties,
such asmass and spin, but we cannot fully explain how these
properties emerge from the underlying dynamics of the
hadron’s interior. A clean probe to investigate the internal
structure of hadrons is the Compton scattering process that
gives access to observables with a clear interpretation in
terms of structure-dependent properties of the hadrons. In
particular, real Compton scattering (RCS) at low energies is
parametrized by polarizabilities that describe the response of
the charge and magnetization distributions inside the
nucleon to an applied quasistatic electromagnetic field.
These structure constants are fundamental properties of
the nucleon, and their determination has driven a relevant
experimental effort in the last few years [1–5].
The effective multipole interactions for the coupling of

the electric (E⃗) and magnetic (H⃗) fields of the photon with
the internal structure of the nucleon is described at leading
order in terms of the electric (αE1) and magnetic (βM1)
scalar polarizabilities [6,7],
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while the four spin polarizabilities (γ…) show up in the
subleading terms:
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where σ⃗ are the protons’ Pauli spin matrices, _E⃗ ¼ ∂tE⃗, and
Eij ¼ 1

2
ð∇iEj þ∇jEiÞ are partial derivatives with respect

to time and space, respectively.
In addition to being fundamental properties of the

nucleon, polarizabilities play a profound role in precision
atomic physics, in the evaluation of the nuclear corrections
to atomic energy levels [8–12] and in astrophysics, influ-
encing neutron star properties [13].
Despite their evident importance in a broad range of

physics topics, up to now a self-consistent experimental
extraction of all the different polarizability values has not
been possible, due to the poor quality of the available
database (see, for instance, Ref. [14]). In all existing fits of
the RCS data, some of the polarizabilities have been fixed
either using theoretical calculations [15–18] or empirical
evaluations from other reactions [19], or, at most, have been
constrained to vary within certain intervals [14]. The
situation has recently improved with the first measurements
of the double-polarization observables Σ2x [1] and Σ2z [3]
and new data for the unpolarized differential cross sections
and the single-polarized Σ3 asymmetry [2,4,5]. The beam
asymmetry is defined as [6]

Σ3 ¼
dσk − dσ⊥
dσk þ dσ⊥

; ð3Þ

where dσkð⊥Þ is the polarized cross section obtained with a
photon beam polarized parallel (or perpendicularly) to the
scattering plane and an unpolarized target. In a similar way,
the double-polarization asymmetries can be defined as

Σ2x ¼
dσRþx − dσL�x

dσRþx þ dσL�x
; and Σ2z ¼

dσRþz − dσL�z

dσRþz þ dσL�z
; ð4Þ

where dσRðLÞ�x is the polarized cross section obtained with
circular right-handed (left-handed) photon polarization and
target spin aligned transversely (�x) with respect to the
incident beam direction, while dσRðLÞ�z is obtained with the
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target spin aligned longitudinally (�z) with respect to the
incident beam direction.
In particular, the Letter fromMornacchi et al. [4] provides

the highest statistics protonRCS single dataset ever obtained
below the pion photoproduction threshold, with 60 unpo-
larized differential cross section points and 36 beam asym-
metry points measured over a large angular range and with
small statistical and systematic errors. Therefore, it repre-
sents a significant improvement for a more accurate extrac-
tion of all the different polarizability values.
In this Letter we present the first consistent and simulta-

neous fit of the six leading-order static proton polar-
izabilities. It has been obtained thanks to both the new
experimental data and an innovative bootstrap-based fitting
method [20]. This algorithm has already been deployed
successfully for the extraction of the proton scalar dynami-
cal and static polarizabilities from low-energy RCS data
[14,21]. The theoretical framework used for this extraction
is based on fixed-t subtracted dispersion relations (DRs)
[7,22,23]. The theoretical uncertainties associated to the
model dependence of our results are also evaluated by
using, as input, pion photoproduction amplitudes obtained
from three different partial wave analyses (PWAs) of the
available experimental data: BnGa-2019 [24], MAID-2021
[25,26], and SAID-MA19 [27]. This is the very first time
that such a comprehensive and self-consistent study on the
simultaneous extraction of all six leading-order proton
polarizabilities from RCS data has been performed.
Database selection and fit procedure.—The proton RCS

database used for this Letter consists of two main sets: the
unpolarized differential cross section data, and the (single
and double) polarization asymmetries. The former can be
further divided into low- and high-energy data, namely
data for which the incoming photon energy Eγ is below or
above the pion photoproduction threshold (∼150 MeV),
respectively.
For the low-energy set, in addition to the new data from

Refs. [4,5], we used the same selection extensively dis-
cussed in a previous work by Pasquini et al. [14], which
includes datasets from Refs. [28–39]. For the high-energy
set, thanks to the DR model used for the theoretical
framework, we were able to consider data measured up
to Eγ ¼ 300 MeV (corresponding to the 2π photoproduc-
tion threshold), thus extending the range used in the fits of
Refs. [14,16]. Furthermore, only for these high-energy
data, we decided to narrow the selection to the new-
generation experiments, namely the measurements per-
formed using tagged photon facilities (see, for instance,
the review of Ref. [40]). Their main advantage, in addition
to a more reliable photon flux determination, is that the
incoming photon energy is known with a resolution of a
few MeV. This is an essential ingredient to reject the
overwhelming background coming from the single π0

photoproduction channel that has a cross section by 2
orders of magnitude higher than the Compton scattering

process, and can mimic the Compton signature when one of
the two photons coming from the π0 decay escapes the
particle detection. The available published data for the
unpolarized cross section come from two different facilities:
MAMI [41–46] (with also few data above pion photo-
production threshold from Ref. [39]) and LEGS [47,48].
The polarization observables have enhanced sensitivity

to the spin polarizabilities [23,49], hence are crucial for the
extraction of these structure constants. The adopted data-
sets include three different polarization observables: Σ2x
[1], Σ2z [3], and Σ3 both below the pion photoproduction
threshold (Refs. [2,4,5]) and above the pion photoproduc-
tion threshold (Ref. [48]).
The fit to extract the leading-order scalar and spin

polarizabilities was performed using a bootstrap-based
method [20] that consists of randomly generating N
Monte Carlo replicas of the fitted experimental database,

where each data point eð0Þi;j is replaced by

eð0Þi;j → eðbÞi;j ¼ ð1þ δj;bÞðeð0Þi;j þ ri;j;bσ
ð0Þ
i;j Þ: ð5Þ

The indices i, j, and b run over the number of data points in
each dataset, the number of datasets, and the bootstrap
replica, respectively; ri;j;b is a random number extracted
from the normal distribution N ð0; 1Þ, and δj;b is a random
variable that accounts for the effect of the common system-
atic errors, independently for each dataset. From each of
these simulated databases, a set of fitted parameters is
extracted. The mean and standard deviation of the obtained
distributions give then the best value and the error for each of
the fitted parameters. This technique offers several advan-
tages compared with other fitting procedures, especially
when different datasets are used together, as in the present
Letter: (i) a straightforward inclusion of common systematic
uncertainties without any a priori assumption on their
distributions and without introducing any additional fit
parameter; (ii) the probability distribution of the fit param-
eters (often non-Gaussian) is obtained directly by the
procedure itself; (iii) the uncertainties on possible nuisance
model parameters are easily and directly taken into account
in the sampling procedure; and (iv) the correct fit p value is
always provided when systematic uncertainties are present
and in all the other cases when the goodness-of-fit distri-
bution is not given by the χ2 distribution.
In the first step of our analysis, we checked the

consistency of the selected database by looking at
the distribution of the normalized residual for each of
the largest datasets (e.g., with more than 40 data points): the
unpolarized cross section from the A2 [4], the TAPS [39],
and the LARA [44] Collaborations and the unpolarized
cross section and beam asymmetry from the LEGS [48]
Collaboration.
Since the cross section data from LARA and LEGS are

known to be in significant disagreement between each other
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(see, for instance, Ref. [15]), we performed a preliminary
test by alternatively including LARA or LEGS data in the
fit database and simultaneously fitting all six polarizabil-
ities using the MAID-2021 [25,26] multipole solution.
For each of the two configurations, we took the output

polarizability best values, calculated the residual distribu-
tion for each dataset, and produced a probability plot [50]
for assessing the residual normal distribution. In all cases,
the residuals were found to follow the expected normal
distribution for all the selected datasets fairly well (see
Fig. 1 of the Supplemental Material [51], where the
probability plots refer to the test without the LEGS data),
except for the unpolarized cross section from both the
LEGS and LARA Collaborations, as shown in Fig. 1. We
repeated the same test using the SAID-MA19 [27] and
BnGa-2019 [24] PWAs and obtained very similar results.
Given also the small fit p values, i.e., ≃5 × 10−4 and ≃1 ×
10−2 for the LEGS and LARA data, respectively, with all
the PWA inputs, we excluded both sets from the database of
the present Letter.
Although the data for the photon asymmetry Σ3 above

threshold are from the same dataset of the LEGS unpo-
larized cross section, they give a consistent residual plot
(see Fig. 1 of the Supplemental Material [51]). Such an
agreement is not surprising since, as noted, e.g. in Ref. [15],
most of the possible systematic biases cancel out in an
asymmetry observable.
Taking all these considerations together, 25 datasets for a

total of 388 points were included in the fit. The angular and
energy coverage of all the used datasets are listed in the
Supplemental Material [51].
Results and discussion.—A total of N ¼ 104 boot-

strapped samples of the database was generated, and the
minimization was performed at the end of each iteration

with all six proton polarizabilities treated as free param-
eters. For convenience, we used as actual fit parameters
some linear combinations of the scalar and spin polariz-
abilities: αE1 � βM1, γE1E1, γM1M1, γ0 ¼ −γE1E1 − γM1M1−
γE1M2 − γM1E2, and γπ¼−γE1E1þγM1M1−γE1M2þγM1E2.
The last term, γπ , is the sum of the dispersive contribution
γdispπ , to be fitted to the data, and the pion-pole contribution,

fixed to γπ
0−pole

π ¼ −46.7 [40]. The choice of the fit
parameters allows for a direct comparison, as a consistency
check, of the fit results for αE1 þ βM1 and γ0 to the available
experimental predictions of the Baldin [39,52–54] and
Gellmann-Goldberger-Thirring (GGT) [52–55] sum rule
values, respectively, obtained using data for the total
photoabsorption cross section. When present, point-to-
point systematic errors were added in quadrature to the
statistical errors, while common systematic scale factors
were treated as in the previous bootstrap extractions by
Pasquini et al. [14,21]; namely they are assumed to follow a
uniform distribution, unless otherwise specified in the
original publication. Moreover, when multiple systematic
sources are given, the final error is the product of all the
generated random uniform variables.
We performed the minimizations by using the nonlinear

least-squares fitting routines of the GSL library [56]. As a
consistency check of this procedure, both the gradient and
the simplex methods were used as best-fit algorithms and
identical results were obtained. The entire procedure was
performed for the three PWAs. The obtained distributions
for each parameter are reported in the Supplemental
Material [51]. The parameter distributions obtained using
the three different PWA inputs have the same shape and
differ only for a shift in their central values. For this reason,
we evaluated the central polarizability values as the
mathematical average of the three different sets of fit
values. Additionally, the largest of the differences between
each set of fit values and the average was used to estimate
an additional model error (conservatively considered as a
standard deviation) due to dependence on the PWA used as
input in the DRs. The resulting best-fit values are

αE1 þ βM1 ¼ ½15.1� 0.7ðfitÞ � 0.1ðmodelÞ� × 10−4 fm3;

αE1 − βM1 ¼ ½10.3� 1.2ðfitÞ � 0.2ðmodelÞ� × 10−4 fm3;

γE1E1 ¼ ½−3.0� 0.6ðfitÞ � 0.4ðmodelÞ� × 10−4 fm4;

γM1M1 ¼ ½3.7� 0.5ðfitÞ � 0.1ðmodelÞ� × 10−4 fm4;

γ0 ¼ ½−1.6þ1.3
−1.4ðfitÞ � 0.9ðmodelÞ� × 10−4 fm4;

γdispπ ¼ ½9.9þ1.9
−2.0ðfitÞ � 0.5ðmodelÞ�10−4 fm4: ð6Þ

The quoted fit errors are the 68% confidence level (CL) and
include the contribution of both the statistical and system-
atic uncertainties of the experimental data. The additional
model-dependent systematic uncertainties, evaluated as
explained above, are given in rms units, and have to be

FIG. 1. Probability plots using the normalized residuals for the
unpolarized cross section from the LARA [44] and the LEGS
[48] Collaborations, obtained from a global fit using the MAID-
2021 multipole solution [25,26]. The points are expected to lie on
the bisector (in cyan) if their residuals are normally distributed.
The red and orange lines show a linear regression fit to the points
from the LARA and LEGS data, respectively, to help the
comparison with the expected distribution.
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added in quadrature to the previous ones to get the overall
values of the estimated systematic uncertainties.
All different fits gave, within rounding errors, a mini-

mum value of the fit function equal to χ̂2red ¼ 1.13. As
mentioned before, the expected goodness-of-fit distribution
is not given by the χ2 function, because of the correlations
between points of a same dataset introduced by the
systematic uncertainties. This density was then evaluated
in the framework of the bootstrap technique [20], and a p
value=24% was estimated from its cumulative distribution.
A plot of this function and the fit correlation matrix are
reported in Fig. 3 and Table 3 of the Supplemental Material
[51], respectively.
The obtained value of both αE1 þ βM1 and γ0 are in

agreement, within the quoted errors, with the available
estimates of the Baldin and GGT sum rule values listed in
Refs. [53,54].
The final residual distribution, the average χ2 per point

for each subset, and the comparison between the results of
the fit with a sample of experimental data from different
observables, both below and above pion threshold, are
collected in Figs. 3–5 of the Supplemental Material [51].
Taken together, all these results confirm the validity of our
overall fit procedure.
From the fit results reported in Eq. (6), we obtai-

ned the 68% CL intervals of the six proton static polar-
izabilities as

αE1 ¼ ½12.7� 0.8ðfitÞ � 0.1ðmodelÞ� × 10−4 fm3;

βM1 ¼ ½2.4� 0.6ðfitÞ � 0.1ðmodelÞ� × 10−4 fm3;

γE1E1 ¼ ½−3.0� 0.6ðfitÞ � 0.4ðmodelÞ� × 10−4 fm4;

γM1M1 ¼ ½3.7� 0.5ðfitÞ � 0.1ðmodelÞ� × 10−4 fm4;

γE1M2 ¼ ½−1.2� 1.0ðfitÞ � 0.3ðmodelÞ� × 10−4 fm4;

γM1E2 ¼ ½2.0� 0.7ðfitÞ � 0.4ðmodelÞ� × 10−4 fm4; ð7Þ

where the meaning of the fit and model errors is the same as
in Eq. (6).
The proton polarizability values reported in Eq. (7) are

shown as blue points in Fig. 2 (bottom row in each panel).
The blue horizontal bars represent the errors given by the fit
procedure. The increase of the overall systematic uncer-
tainties due to the inclusion of the model errors is shown in
red. In Figs. 2(a) and 2(b), the vertical gray bands give the
average 68% CL interval on αE1 and βM1 as evaluated by
the Particle Data Group (PDG) [57]. In the same figures,
the new results are compared with some of the existing
global extractions of αE1 and βM1 using DRs [14], Heavy
Baryon Chiral Perturbation Theory (HBChPT) [16], and
Baryon Chiral Perturbation Theory (BChPT) [17], respec-
tively, where at least three spin polarizabilities were kept
fixed. In Figs. 2(c)–2(f) our new results are compared
with the last experimental extraction [3], where the two
scalar polarizabilities were fixed, and three theoretical

FIG. 2. Values of the leading-order static proton polarizabilities obtained from the fit procedure. In each panel, our new results are
reported in blue. The blue error bars represent the fit error only; the increase in the total error due to the inclusion of the systematic
contribution from the model dependency is shown in red. For the two scalar polarizabilities in (a) and (b), DR [14], HBChPT [16], and
BChPT [17] refer to three extractions within the dispersion relation [7,22,23], heavy baryon chiral perturbation theory [18], and baryon
chiral perturbation theory [58] frameworks, respectively. In all cases, most of the spin polarizabilities were fixed to a given value. For the
four spin polarizabilities in (c)–(f), some of the existing extractions and theoretical predictions are shown below and above the dotted
line, respectively. In particular, A2 refers to the most recent experimental extraction [3], where both scalar polarizabilities were fixed to
the PDG values [57]. DR [7], HBChPT [16,18], and BChPT [59] above the dotted line refer to theoretical predictions using different
approaches.
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calculations within DRs [7], HBChPT [16,18], and BChPT
[17]. The high quality, as well as the importance, of these
new results is highlighted in all the plots. In fact, they
provide a self-consistent extraction of the six leading-order
static proton polarizabilities without any fitting approxi-
mation, and with errors that are competitive with those of
all the existing evaluations, which were all performed by
constraining some of the polarizabilities to reduce the
uncertainty on the ones of interest. In particular, the new
results from the A2 Collaboration on the unpolarized cross
section [4] were fundamental in reducing the correlations
between αE1 − βM1 and γπ , and between αE1 − βM1

and γM1M1.
These new results then are a significant benchmark for

all future theoretical and experimental polarizability esti-
mates. However, the fit parameters still have relevant
uncertainties and, as can be seen from the values reported
in the Supplemental Material [51], there is still a slightly
high correlation between γM1M1 and γπ (ρðγM1M1−γπÞ ≃ 0.80).
These are clear indications of the need for new dedicated
measurements, which will be discussed in detail in a
dedicated forthcoming publication.
In summary, we presented the first simultaneous and

self-consistent extraction of the six leading-order static
proton polarizabilities. The fit was performed using a
bootstrap-based technique combined with a fixed-t sub-
tracted dispersion relation model for the theoretical calcu-
lation, using three different PWA solutions as input. The
obtained values have an error that is competitive with the
existing extractions, which were all obtained with the
inclusion of constraints on some of the fit parameters.
These results provide new important information to our
understanding of the internal electromagnetic proton struc-
ture, and should be used as input for further experimental
and theoretical extractions.
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