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Using a data sample corresponding to an integrated luminosity of 11.3 fb~! collected at center-of-mass
energies from 4.23 to 4.70 GeV with the BESIII detector, we measure the product of the ete™ —
7t 7y, (3823) cross section and the branching fraction B[y, (3823) — yy,,]. For the first time, resonance
structure is observed in the cross section line shape of ete™ — ztz7y,(3823) with significances
exceeding 5. A fit to data with two coherent Breit-Wigner resonances modeling the /s-dependent cross
section yields M(R,) = 4406.9 £ 17.2 £ 4.5 MeV/c?, T'(R,) = 128.1 +37.2 + 2.3 MeV, and M(R,) =
4647.9 £ 8.6 £ 0.8 MeV/c?, T(R,) = 33.1 £ 18.6 + 4.1 MeV. Though weakly disfavored by the data,
a single resonance with M(R) = 4417.5426.2 +3.5 MeV/c?, T'(R) = 245 + 48 &+ 13 MeV is also

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further
distributionj of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded
by SCOAP".
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possible to interpret data. This observation deepens our understanding of the nature of the vector
charmoniumlike states. The mass of the y, (3823) state is measured as (3823.12 £+ 0.43 £ 0.13) MeV/c?,

which is the most precise measurement to date.

DOI: 10.1103/PhysRevLett.129.102003

In the quark model, hadrons are strongly interacting,
composite particles built from color-neutral combinations
of quarks and antiquarks [1]. It was long thought that all
observed hadrons fall into two classes only: baryons,
composed of three quarks, and mesons, bound states of
a quark-antiquark pair. The QCD theory describing the
strong interaction also allowed for other color-neutral
configurations, but there was no experimental evidence
for such “exotic” hadrons.

This simple picture, however, has been challenged since
2003, when many new charmoniumlike states such as the
xc1(3872) [2], w(4260) [3], and Z.(3900) [4,5] have been
observed experimentally. These particles cannot easily be
accommodated in the spectrum of conventional charmo-
nium states and are widely considered to be promising
candidates for QCD exotic hadrons [6,7]. Among them, the
vector y states usually couple to hidden charm final states
like J/y, w(2S), or h. via dipion transitions, such as
the w(4260) - 7zt~ J/w [3,8,9], w(4360)/y(4660) —
atx~yw(2S) [10,11], and w(4390) - z*z~h. [12]. In
addition, there are also vector states with mass above
4.6 GeV reported in ete” - AFAZ [13], and eTe™ —
D{D(2536)"/D{D%,(2573)~ processes [14]. At the
moment, experimental information about these y states,
especially for the high mass states is still quite limited. It is
not clear whether y(4360) and w(4390) correspond to the
same resonance or not. Above 4.6 GeV, the resonance
parameters of vector states observed in hidden-charm and
open-charm final states are not exactly the same. Whether
there exists one or more resonances is a long-standing
puzzle in the study of the vector charmoniumlike spectrum.
To pin down these issues, new observations from experi-
ment are urgently needed.

One of the vector states, the y(4660) resonance, was first
observed by the Belle experiment [11] and later confirmed
by the BABAR and BESIII experiments [15,16]. It remains,
however, unclear what the exact nature is of the y(4660).
Possible interpretations of its internal structure include
a hadronic molecule [17], a baryonium [18], or a compact
tetraquark state [19]. For these theoretical models, the
coupling of w(4660) to the y(2S) state with no or weak
coupling to other charmonium states is an essential
element. Therefore, a search for the decay of y(4660) to
final state other than y/(2S) in experiment helps to test
various pictures for the y(4660) structure.

The D-wave charmonium state y,(3823) [20,21] and
w3(3842) [22] were well established recently, and several
decay modes of the y,(3823) state are also observed [23].

It serves as a new probe to study the vector y states. We
search for the dipion transition of w(4660) to y,(3823),
which on the one hand helps establish the y(4660) state,
and on the other hand sheds light on its internal structure.
At the same time, the y,(3823) mass is also precisely
measured, which can be used to calibrate the parameters in
the potential model [24], and finally greatly deepens our
understanding of the dynamics of the c¢ system.

In this Letter, we measure the /s-dependent production
cross section of the process ete™ — nt 77y, (3823), and
explore the resonance structures in the cross section line
shape. The resonance parameters of the y,(3823) state are
measured as well. To increase the yield of signal events,
a partial reconstruction approach is employed. We use a
data sample corresponding to an integrated luminosity of
11.3 fb~!, taken at center-of-mass (c.m.) energies from
/s = 4.23t04.70 GeV [25], with the BESIII detector [26]
operating at the BEPCII storage ring [27]. The y,(3823)
candidates are reconstructed in their yy,.; decay mode, with
Y1 = vJ/wand J/y — €767 (£ = e or p).

The BESIII detector is described in detail elsewhere
[26,28]. A GEANT4-based [29] Monte Carlo (MC) simu-
lation software package is used to optimize event selection
criteria, determine the detection efficiency, and estimate the
backgrounds. For the signal process, we generate 50 000
ete” - T ny,(3823) events at each c.m. energy using
an EVTGEN [30] phase space model. Initial-state-radiation
(ISR) is simulated with KkmMC [31], where we use the
ete” - ntnw,(3823) cross section measured from
this analysis as input. The maximum ISR photon energy
is set to correspond to the production threshold of the
T w,(3823) system at 4.1 GeV/c?. Final-state radiation
is simulated with PHOTOS [32].

Events with four good charged tracks with net charge
zero are selected as described in Ref. [21]. Electromagnetic
showers identified as photon candidates must satisfy
fiducial shower quality as well as timing requirements
as described in Ref. [33]. For events with only one photon
candidate (N, = 1), assuming that only one of the
two radiative photons is detected, we use a partial
reconstruction strategy, i.e., allowing one missing photon
(7 miss)- The mass square of the missing photon candidate is
required to be —0.07 < M2, () < 0.08 GeV?/c* (with a
signal efficiency > 99%), where the 4 momentum of y ;. 1S
computed from momentum conservation. To improve the
momentum and energy resolution and to further reduce
background, a one-constraint (1C) kinematic fit is per-
formed under the hypothesis of 777 ¢ ¢ yy e to the
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initial e*e~ c.m. system. The y?/ndf of the kinematic fit is
required to be less than 15/1. For multiphoton events
(N, >22), we use the full reconstruction strategy as
described in Ref. [21].

To reject radiative Bhabha and radiative dimuon
(yete™ /yu™u~) background events with y conversion
(y — eTe™), where the converted electrons are misidenti-
fied as pions, the cosine of the opening angle of the pion
pairs is required to be less than 0.98. The background
from ete™ — nJ/y with n = zt7 72" /yatn~ is effec-
tively rejected by the invariant mass requirement
M(yYmiss®t ) > 0.65 GeV/c?. In order to remove pos-
sible backgrounds from ete™ — yry(2S), efe” —
ny(2S) with n — yy, and ete™ — yyw(2S) processes,
the invariant mass of ztz~J/y is required to satisfy
M(z 2= /y) — my(29)]| > 7 MeV/c? [34,35].

According to a resolution of (14.2 4+ 0.5) MeV from
w(2S) data events for the M(£"£~) mass, the J/y signal
region is defined as 3.06 < M(£+¢~) < 3.135 GeV/c>.
To estimate non-J/y backgrounds, we also define J/y
mass sidebands as 2.950 < M(£+¢7) < 3.025 GeV/c? or
3.170 < M(¢7¢7) < 3.245 GeV/c?. To reconstruct the
e candidate from the y,(3823) decay, the 4 momenta
of the two radiative photons after the 1C kinematic fit are
boosted to the c.m. frame of the y,(3823) system. The
photon with the higher energy is used to reconstruct y.,
while the lower-energy one is considered to originate from
the y,(3823) decay. MC simulation shows that the mis-
assignment of the two photons is negligibly small (< 1%).
The mass window of the reconstructed y.; candidates is
defined as 3.48 < M(yyJ/y) < 3.53 GeV/c? [34], with a
signal efficiency of 96%.

The possible remaining backgrounds mainly come from
ete” = (' /yw)J )y, with (n /w) — yyzta~ [yn"z~, and
atnnta(2°/yy). The ete™ — (i /yw)J /w backgrounds
are measured by BESIII using the same data set [36,37] and
can be reliably simulated. The ete™ — zt 2~z 2~ (2%/yy)
continuum background can be estimated by data in the J /y
mass sidebands. All these background sources are found
to be small, and only produce flat distributions in the
w,(3823) signal region.

To achieve better sensitivity, the one-photon events
(partial reconstruction) and the multiphoton events (full
reconstruction) are separated. Figure 1 shows the
Meil(ztz=) distributions for data, where obvious
w(2S) and w,(3823) signal peaks are observed in both
the one-photon and multiphoton events. Here,
M=zt 77) = \/(P s+, — P+ — P,-)? is the recoil mass
of #tz~, where P,+,- and P, are the 4 momenta of the
initial e™e™ system and the reconstructed #+ candidates,
respectively. For this expression, we use the 7* momenta
without the kinematic fit correction because of the good
resolution for low momentum pions according to MC
simulation studies. A simultaneous unbinned extended

NQ —+ Data NQ —+ Data
3 — Fit s — Fit
S 100 - Background =100F - Background
0 [ Sideband [Te) [ Sideband
— —
n n
€ 50 c 50F
5 5 5
> >
L L

G3.65 3.7 375 38 385
M) (GeV/c?)

03.65 3.7 375 38 385
M) (GeV/c?)

FIG. 1. Result of the simultaneous fit to the M™!(z+z™)
distributions for one-photon events (left) and multiphoton events
(right). Dots with error bars are the selected data, the red solid
curves are fit results, the blue dashed curves are backgrounds, and
the green shaded histograms are backgrounds estimated from
J/y mass sideband events.

maximum likelihood fit to the two M™!(z*z~) distribu-
tions is performed to determine the parameters of the
w,(3823) state. In the fit, the signal probability density
function (PDF) is represented by w(2S) and w,(3823)
(with input mass of 3.823 GeV/c? and a zero natural
width) MC simulated shapes, convolved with Gaussian
functions with free mean y and width ¢ to account for the
mass and resolution difference between data and MC
simulation, respectively. The background shape is para-
metrized as a second-order polynomial.

The fit results, also shown in Fig. 1, yield
My, (3823)] = My»(3823)]inpu + My, (3823) — Hy(2s) =
3823.12 + 0.43 MeV/c?, where M[y,(3823)];,0u 1S the
input y, (3823) mass in MC simulation; y,,, 3303) = 1.02 &
0.43 MeV/c? and g, o5) = 0.90 + 0.22 MeV/c? are the
mass shift values for the w,(3823) and y/(2S) shapes,
respectively. The total number of y,(3823) signal events
determined from the fit is 120.0 & 13.6. The statistical
significance of the w,(3823) signal is estimated to
be 13.40, by comparing the difference between the log-
likelihood value [A(InL) = 96.6] with or without the
w,(3823) signal in the fit and taking the change of the
number of degrees of freedom (Andf = 4) into account. We
are not able to measure the intrinsic width of y,(3823)
precisely because of the limited data sample size. From a fit
using a Breit-Wigner (BW) function (with a width param-
eter that is left free) convolved with a double Gaussian
function as signal PDF for y,(3823), we set an upper limit
of T'[y,(3823)] <29 MeV at the 90% confidence
level (CL).

The product of the \/s-dependent e™ e~ — 7" 77y, (3823)
cross section and the branching ratio of y,(3823) — yy, is
calculated as ofete” — 777w, (3823)]|Bly,(3823) —
vxel] = [N*8/LineB(1 + 8)], where N%¢ is the number of
y,(3823) — yy.; signal events obtained from a same fit
(o fixed to previous result) to the M™!(z " z~) distribution
at a certain c.m. energy, L;, is the integrated luminosity,
€ is the detection efficiency, B is the branching fraction of
xe1 = vy =y, and (1 + 6) is the radiative correc-
tion factor, which depends on the cross section line shape of

inpu

102003-5



PHYSICAL REVIEW LETTERS 129, 102003 (2022)

TABLE 1. Results of the fit to the distribution of clete™ —
T nmw,(3823)] B[y, (3823) = yy.i] with two coherent resonan-
ces. Here, M[R;] and ', [R;] represent the mass (in MeV/c?) and
total width (in MeV) of resonance R;, respectively; I+ .- Bf‘ B, is
the product of the e e~ partial width (in eV/c?) and branching
fraction of R; » n7 7~ y,(3823) - ntx7yy., (i=1, 2). The
parameter ¢ (in degrees) is the relative phase between the two
resonances. The first uncertainties are statistical and the second
systematic.

Parameters Solution I Solution II
M[R,|] 44069 £17.2£45

Tot[R1] 128.1 £37.24+2.3

re+e,3’l€1 B, 0.36 £0.10 £0.03 0.30 £0.09 £0.03
M[R,] 4647.9 £ 8.6 £0.8

i [R5] 33.1+£18.6 4.1

Fe*e’BfZB2 0.24 £0.07 £0.02 0.06 £ 0.03 £ 0.01
¢ 267.1 £16.24+3.2 —-3248 £43.0+5.7

ete” - T nw,(3823). Since visible enhancements are
observed near 4.40 and 4.65 GeV in the cross section line
shape, the radiative correction factors are first obtained by
modeling the line shape with two coherent BW resonances,
and then iterated by updating the cross section measurement
until this procedure converges, with a relative difference for
(1 + 8)e < 1% between the last two iterations. The numeri-
cal results of the cross section measurement are listed in
Supplemental Material [38].

To extract the resonance structures in ofete” —
ntn"y,(3823)], a maximum likelihood fit using the
coherent sum of two BW resonances to model the measured
cross section is performed to data events in the y,(3823)
signal interval [3.815,3.835] GeV/c?. The likelihood is
constructed as that in Ref. [39]. There are two solutions
with identical fit quality, and all resonance parameters from
the fit are summarized in Table I. In addition, a fit with one
single BW resonance to model the cross section yields
MIR] = 4417.5 +£26.2 MeV/c?, T\y|R]=245+48MeV,
[,+,-B1B, =0.57+0.08 eV/c?. The fit result is shown
in Fig. 2. To discriminate the two resonances hypothesis
(H,) from the one resonance hypothesis (H;) for the
cross section interpretation, the likelihood ratio =
—21In(Lgw/Lopw) is used as a test variable. We perform
2000 MC pseudoexperiments for both hypotheses and the
corresponding ¢ distributions are shown in Fig. 2. The
t = 13.6 from data is positive and slightly favors H,. The p
value to reject H) is 8.2%, corresponding to a significance
of 1.76. Other possible continuum parametrizations of the
cross section in the fit, such as a shape of three-body phase
space, 1/s", or a product of phase space with 1/s" are also
tested, and they are not able to describe data well. The
significance for the resonance hypothesis (with either one

°
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FIG. 2. Left panel: result of the fit to the /s-dependent cross
section oleTe” — nT w7y, (3823)] times the branching ratio
Bly»(3823) — yy.]. Dots with error bars are data, and the
red solid (blue dashed) curve shows the fit with two coherent
resonances (one resonance). Right panel: the likelihood ratio ¢t =
—2In(Lgw/Logw) distribution from MC pseudoexperiments
under two cross section hypothesis. Red dots (blue squares)
with error bars are the two resonances (one resonance) hypoth-
esis, and the black line shows data measurement.

or two resonances) over continuum is estimated to be
greater than So.

The systematic uncertainties in the w,(3823) mass
measurement include those from the absolute mass scale,
resolution, parametrization of the w,(3823) signal and
background shapes. In the y,(3823) mass measurement,
we use the y(2S) mass to calibrate the absolute mass scale.
The uncertainty from the y(2S) mass measurement is
therefore taken as the systematic uncertainty due to the
absolute mass scale, which is 0.12 MeV/ ¢%. To increase
the w(2S) sample size and thus reduce the w(2S) mass
uncertainty, we also employ (2S) — yy., and y(2S) —
nJ /y data events. The resolution difference between data
and MC simulation is also estimated using the w(2S5)
events. Fixing the resolution from a free value to the one
measured with w(2S) events, the mass difference for
w,(3823) in the fit is 0.01 MeV/c?. In the nominal fit,
the signal PDF of y,(3823) is parametrized as a MC
simulated shape convolved with Gaussian resolution.
A signal PDF parametrized as a BW convolved with
Gaussian resolution is also tested, and the mass difference
(0.03 MeV/c?) is taken as the systematic uncertainty from
signal parametrization. Changing the background shape
from a second-order polynomial to a linear term yields
0.03 MeV/c? mass difference associated with the back-
ground shape parametrization. Assuming that all the
sources are independent, the total systematic uncertainty
is calculated by adding them in quadrature, resulting in
0.13 MeV/c? for the y,(3823) mass measurement. For the
y,(3823) width, we measure the upper limits with all of the
above systematic uncertainty sources, and report the most
conservative one.

The systematic uncertainties in the cross section meas-
urement mainly come from Iuminosity measurement,
efficiencies, kinematic fit, signal shape, background shape,
decay model, radiative correction, branching ratios and MC
sample size. The luminosity is measured using Bhabha
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events, with an uncertainty of 1.0% [25]. The uncertainty
in the tracking efficiency for high momentum leptons is
1.0% per track. Pions have momenta between 0.1 and
0.6 GeV/c, and the momentum-weighted uncertainty is
1.0% per track. By requiring at least one good photon
candidate to be detected, the photon detection efficiency is
very high and the uncertainty is negligible. The systematic
uncertainty for the choice of J/y mass window is similar to
that of Ref. [40], which is 1.6%. A track helix parameters
correction method as discussed in Ref. [41] is applied to
each MC simulated event during the 1C kinematic fit. The
difference in detection efficiencies with or without correc-
tions, 1.7%, is assigned as the systematic uncertainty from
kinematic fit. The same sources of signal and background
shape parametrizations as discussed for the y,(3823) mass
measurement would contribute 3.9% and 1.4% differences
in the w,(3823) signal events yields, which are taken as
systematic uncertainties in the cross section measurement.
We model the et e™ — 777y, (3823) process with L = 2
between 7z~ and w,(3823) in the MC simulation. The
efficiency difference between this model and a three-body
phase space model is 1.8%. For the radiative correction, we
take an alternative cross section line shape from one BW
resonance model, and the difference for (1 + §)e to the
nominal two BW resonances model is 5.0%. The uncer-
tainties on the branching ratios for y., — yJ/w (2.9%)
and J/y — ¢7¢~ (0.5%) are taken from PDG [35]. The
uncertainty from MC sample size is 0.6%. Assuming that
all the sources are independent, the total systematic
uncertainty is calculated by adding them in quadrature,
resulting in 8.8% for the cross section measurement.

The systematic uncertainties for the resonance parame-
ters in the cross section fit come from absolute c.m. energy
measurement, the cross section uncertainty, and the fit
model. The c.m. energies of data sets taken in different time
periods are measured with different methods. Shifting the
c.m. energies of data sets taken in the same period globally
(i.e., fully correlated) within uncertainties, we repeat the
cross section fit. The deviations of the resonance param-
eters are taken as systematic uncertainties. The systematic
uncertainties on the cross section measurements are
common to all c.m. energies and are propagated to
I',+.-B1B, with the same amount. We quote 8.8% system-
atic uncertainty for I+ - B B,. BW functions with constant
full widths are used as the PDF in the cross section fit. We
also use BW functions with /s-dependent full widths as
the fit PDF, and the deviations of the resonance parameters
between this fit and the nominal one are taken as systematic
uncertainties from fit model. All these systematic contri-
butions are listed in Supplemental Material [38]. Assuming
all the sources are independent, the total systematic
uncertainties are calculated by adding them in quadrature.

In summary, the product of the ete™ — 777y, (3823)
cross section and the branching ratio of y,(3823) — yy. is

measured with 11.3 fb~! data collected with the BESIII
detector at \/E =4.23 to 4.70 GeV. For the first time, we
observe resonance structure in the cross section line shape
with a significance greater than 5¢. A fit to data with a
sum of two coherent BW resonances to model the cross
section yields the masses and widths of both resonances as
shown in Table I. Although weakly disfavored by data with
1.70, a single resonance with a mass 4417.5 +26.2 +
3.5 MeV/cz, and a width 245 £48 £ 13 MeV is also
possible to interpret data. Such a resonance has not been
observed before. This is the first observation of vector y
states decaying to D-wave charmonium state, which
provides new insights about the y state wave functions.
Considering that the measured ete™ — zTayw(3770)
cross section is also relatively large near 4.4 GeV [42],
this indicates that the coupling between the y states and
D-wave charmonium might be popular, which should
be taken into account when explaining the nature of
these y states.

Within current uncertainties, the parameters of structures
in the two resonances interpretation are similar to the
w(4360) and w(4660) states reported in zz y(2S)
[10,11]. Assuming the observed structures correspond to
these resonances, this will be the second decay channel of
the mysterious y(4660) state after more than 15 years of
discovery. By comparing the measured cross section of
olete” -t n w,(3823)] and olet e — xt Ty (2S)] [16],
we find {B[y(4660) —» n" 7 w,(3823)]|B[w,(3823) —
vxell/Blw(4660) — ntz~w(2S)]} reaches 10% level.
Taking the branching fraction of B[y,(3823) = yy.] ~
50% [43] as input, we obtain the relative partial
decay width {T'[y(4660) — n* 77y, (3823)] /T [y (4660) —
atz7yw(2S)]} ~20%. This sizable partial width poses a
challenge to the f,(980)y(2S) hadron molecule interpre-
tation [17] for the w(4660) nature, which expects y(4660)
predominantly decaying into f(980)y/(2S). The observed
w(4660) — 7777y, (3823) decay also differs from an
extended baryonium picture [18] which explains the

w(4660) as a X2¥0 baryonium and speculates y(4660)
is a first radial excitation in accordance with the n =2
radial quantum number of y(2S) and absent coupling to
charmonium states with n = 1. A similar argument also
appears in a diquark-antidiquark tetraquark explanation
[19], which assigns the y(4660) as the radial excitation
of the y(4260) (a P-wave tetraquark) based on the only
observed decay w(4660) — ztz~y/(2S). Our observation
obviously deviates from this assignment.

We also measure the mass of the y,(3823) state as
M|y,(3823)] = 3823.12 £ 0.43 4 0.13 MeV/c?, where
the first uncertainty is statistical and the second system-
atic. The w,(3823) width is studied, and an upper limit
[y,(3823)] <2.9 MeV at the 90% CL is obtained.
This is the most precise measurement of the y,(3823)
mass and the most stringent constraint on its width to
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date, which will help to refine the parameters of potential
models and significantly reduce the uncertainties
(ca. £50 MeV) of the D-wave states predicted by the
potential model [24].
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