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We extend the theoretical prediction for the width difference ΔΓq in the mixing of neutral B mesons in
the Standard Model to next-to-next-to-leading order in αs. To this aim, we calculate three-loop diagrams
with two jΔBj ¼ 1 current-current operators analytically. In the matching between jΔBj ¼ 1 and jΔBj ¼ 2

effective theories, we regularize the infrared divergences dimensionally and take into account all relevant
evanescent operators. Further elements of the calculation are the two-loop renormalization matrix Zij for

the jΔBj ¼ 2 operators and the Oðα2sÞ corrections to the finite renormalization that ensures the 1=mb

suppression of the operator R0 at two-loop order. Our theoretical prediction reads ΔΓs=ΔMs ¼
ð4.33� 0.93Þ × 10−3 if expressed in terms of the bottom mass in the MS scheme and ΔΓs=ΔMs ¼
ð4.20� 0.95Þ × 10−3 for the use of the potential-subtracted mass. While the controversy on jVcbj affects
both ΔΓs and ΔMs, the ratio ΔΓs=ΔMs is not affected by the uncertainty in jVcbj.
DOI: 10.1103/PhysRevLett.129.102001

Introduction.—The weak interaction of the Standard
Model (SM) permits transitions between a neutral Bq

meson and its antiparticle B̄q, where q ¼ d or s. The
corresponding transition amplitude is mediated by box
diagrams with W bosons and up-type quarks u, c, or t on
the internal lines. The time evolution of the two-state
system ðjBqi; jB̄qiÞ is governed by two Hermitian 2 × 2

matrices, the mass matrixMq, and the decay matrix Γq. By
diagonalizing Mq − iΓq=2, one finds the mass eigenstates
jBq

Li and jBq
Hi expressed in terms of the flavor eigenstates

jBqi, jB̄qi. There are three observables: the mass and width
differences ΔMq and ΔΓq among the mass eigenstates, as
well as the CP asymmetry in flavor-specific decays, aqfs.
Experimentally, ΔMq is read off from the Bq − B̄q oscil-
lation frequency, ΔΓq is found by measuring lifetimes in
different decay modes, and aqfs is usually measured through
the time-dependent CP asymmetry in semileptonic Bq

decays. These observables are related to the off-diagonal
elements of Mq and Γq as follows:

ΔMq ≃ 2jMq
12j;

ΔΓq

ΔMq
¼ −Re

Γq
12

Mq
12

; aqfs ¼ Im
Γq
12

Mq
12

;

ð1Þ
with jΔΓqj ≃ 2jΓq

12j. Mq
12 is sensitive to new physics

mediated by heavy particles, while Γq
12 probes the effects

of light new particles with feeble couplings (see, e.g.,
Refs. [1,2]). However, a better knowledge of Γq

12 will also
help to reveal new physics in Mq

12: Inclusive and exclusive
semileptonic B decays give different values for the element
jVcbj of the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
leading to an Oð15%Þ uncertainty onto the CKM factor
ðVtbV�

tqÞ2 of Mq
12, which cancels from the ratio ΔΓq=ΔMq

in Eq. (1).
The measurements of LHCb [3], CMS [4], ATLAS [5],

CDF [6], and DØ [7] combine to

ΔΓexp
s ¼ ð0.082� 0.005Þ ps−1 ½8�; ð2Þ

while ΔΓexp
d is consistent with zero. The precise value

in Eq. (2) calls for a better SM prediction. We specify to
q ¼ s from now on.
The SM predictions for Γs

12 are calculated from the
dispersive part of the Bs ↔ B̄s amplitude. To properly
accommodate strong interaction effects from different
energy scales, one employs two operator product expan-
sions (OPEs). First, one matches the SM to an effective
theory with jΔBj ¼ 1 operators [9], where B is the beauty
quantum number. The operators with the largest coeffi-
cients are the current-current operatorsQ1;2 describing tree-
level b decays. The effective jΔBj ¼ 1 Hamiltonian is
known to the next-to-leading (NLO) [10–12] and next-to-
next-to-leading order (NNLO) [13–15] of quantum
chromodynamics (QCD). Second, one employs the heavy
quark expansion (HQE) [16–24] (cf. also Ref. [25] for a
review), which expresses the Bs ↔ B̄s transition amplitude
as a series in ΛQCD=mb, where ΛQCD ∼ 400 MeV is the
fundamental scale of QCD andmb is the b quark mass. The
HQE involves local jΔBj ¼ 2 operators; the corresponding
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Wilson coefficients are found from the ΔB ¼ 2 amplitude
calculated in both the jΔBj ¼ 1 and jΔBj ¼ 2 theories to
the desired order in αs.
The state of the art is as follows: QCD corrections to Γs

12

are only known for the leading term of the ΛQCD=mb

expansion (“leading power”). These include NLO QCD
corrections to the contributions with current-current and
chromomagnetic penguin operators [26–29], the corre-
sponding NNLO corrections (and NLO corrections involv-
ing four-quark penguin operators) proportional to the
number Nf of active quark flavors [30–32], as well as
NLO results with one current-current and one penguin
operator [33] or two penguin operators [34]. The latter
paper also presents two-loop results with one or two
chromomagnetic penguin operators being part of the
NNLO and N3LO contributions. (The four-quark penguin
operators Q3–6 have Wilson coefficients which are much
smaller than those of Q1;2, and the chromomagnetic
penguin operator contributes with a suppression factor of
αs.) The corrections of Ref. [30] and Refs. [33,34] have
been calculated as an expansion in mc=mb to first and
second order, respectively. ΔΓs=ΔMs further involves a
well-computed ratio of two hadronic matrix elements [35–
37]. The contribution to Γs

12 being subleading in ΛQCD=mb

is only known to the LO of QCD [38], and the hadronic
matrix elements still have large errors [39].
Both the described perturbative contribution and the

power-suppressed term have theoretical uncertainties
exceeding the experimental error in Eq. (2). In this
Letter, we present NNLO QCD corrections to the numeri-
cally dominant contribution with two current-current oper-
ators and reduce the perturbative uncertainty of the leading-
power term to the level of the experimental error.
Calculation.—To obtain ΔΓs=ΔMs, we use the known

two-loop QCD corrections to Ms
12 from Ref. [11]. It is

convenient to decompose Γs
12 according to the CKM

structures

Γs
12 ¼ −ðλscÞ2Γcc

12 − 2λscλ
s
uΓuc

12 − ðλsuÞ2Γuu
12 ; ð3Þ

where λsa ¼ V�
asVab with a ¼ u, c. In a first step, we

integrate out all degrees of freedom heavier than the bottom
quark mass mb, so that the dynamical degrees of freedom
are given by the five lightest quarks and the gluons. We
adopt the operator basis of the jΔBj ¼ 1 theory from
Ref. [40], matched to the Standard Model at the scale
μ0 ≈ 2mW ≈mtðmtÞ. Renormalization group running deter-
mines the couplings of the effective operators at the scale μ1
of the order mb.
Next, we perform a HQE, which allows us to write Γs

12 as
an expansion in 1=mb. At each order, Γs

12 is expressed as a
sum of Wilson coefficients multiplying respective operator
matrix elements, computed using lattice gauge theory [35]
or QCD sum rules [36,37]. To leading order in the 1=mb
expansion, we have

Γab
12 ¼ G2

Fm
2
b

24πMBs

½HabðzÞhBsjQjB̄si þ H̃ab
S ðzÞhBsjQ̃SjB̄si�

þOðΛQCD=mbÞ; ð4Þ

where ab ∈ fcc; uc; uug. GF is the Fermi constant and
MBs

is the mass of the Bs meson. The topic of this Letter is
the computation of the matching coefficients Hab and H̃ab

S
to next-to-next-to-leading order (NNLO) in the strong
coupling constant αs. They depend on z ¼ m2

c=m2
b. For

the ΔB ¼ 1 theory, one distinguishes current-current and
penguin operators. At leading and next-to-leading orders,
the current-current operators provide about 90% of the total
contribution to Γab

12 [34]. Thus, we restrict ourselves to the
current-current contributions.
Our NNLO calculation involves several challenges.

First, it is necessary to perform a three-loop calculation
of the amplitude bs̄ → b̄s in the ΔB ¼ 1 theory. Sample
Feynman diagrams are shown in Fig. 1. In total, about 20
000 three-loop diagrams have to be considered, which
requires an automated setup for the computation [41–44].
For the leading term in the HQE, we are allowed to set the
momentum of the strange quark to zero. Furthermore, we
expand in the charm quark mass up to second order, [45]
which reduces the integrals to on-shell two-point functions.
The propagators inside the loop diagrams are either
massless or carry the mass mb. All occurring integrals
are reduced [46–48] to 23 genuine three-loop master
integrals and calculated analytically [49–55].
On the ΔB ¼ 2 side, a two-loop calculation is necessary

(cf. Fig. 1), where one encounters three physical and 17
evanescent operators (cf. Ref. [34]). One must compute the
corresponding renormalization constants for the operator
mixing up to two-loop order.
The calculation of the ΔB ¼ 2 matrix elements entails a

field theoretical subtlety. In four dimensions there are
only two physical operators, whereas for the calculation
in d dimensions three have to be considered. For our
calculation, it is convenient to choose Q, Q̃S, and R0 [34]
with

R0 ¼ QS þ α1Q̃S þ
1

2
α2Q: ð5Þ

(a) (b)

FIG. 1. Sample Feynman diagrams in the ΔB ¼ 1 and ΔB ¼ 2
theories with f ¼ u, d, s, c, b. Solid and curly lines represent
quarks and gluons, respectively. The orange and blue blobs
indicate operator insertions.
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At lowest order in αs, we have α1 ¼ α2 ¼ 1, and the matrix
element of R0 is 1=mb suppressed in four dimensions. At
higher orders, the quantities α1 and α2 are chosen such that
the 1=mb suppression is maintained. The one-loop correc-
tions and the fermionic two-loop terms have been presented
in Refs. [26] and [30], respectively. For our NNLO
calculation, the α2s corrections to α1 and α2 are needed.
The 1=mb suppression of hR0i beyond tree level is

manifest only if one is able to distinguish between ultra-
violet (UV) and infrared (IR) divergences, e.g., by regu-
larizing the latter using a gluon mass. Otherwise, R0

develops an unphysical evanescent piece ER0
that scales

as m0
b [34] and hence must be included in the definition of

R0 to obtain correct matching coefficients. One cannot
isolate ER0

from R0 at the operator level, but one can
distinguish evanescent and physical pieces in the matrix
elements: We use R0 from Eq. (5) including the finite UV
renormalization encoded in α1 and α2 in our matching
calculation. To this end, we have first calculated the linear
combination of the renormalized two-loop matrix elements
hQið2Þ, hQSið2Þ, and hQ̃Sið2Þ as given in Eq. (5). Using a
gluon mass along the lines of Ref. [56] and Feynman
gauge, we observe that each of the individual matrix
elements becomes manifestly finite upon UV renormaliza-
tion. α1 and α2 to order α2s are extracted from the require-
ment that the linear combination must vanish in the
limit mb → ∞.
The matching between the jΔBj ¼ 1 and jΔBj ¼ 2

effective theories is conceptually simple in the case where
IR divergences are not regularized dimensionally. In this
case, the UV renormalization renders amplitudes of both
theories manifestly finite, allowing us to take the limit
d → 4, where all matrix elements of evanescent operators
vanish. However, for technical reasons we prefer to use
ϵ ¼ ϵUV ¼ ϵIR, which simplifies the evaluation of the
amplitudes but complicates the matching. Following
Ref. [57], we need to extend the leading order (LO)
matching to Oðϵ2Þ and the NLO matching to OðϵÞ in
order to determine the NNLO matching coefficients.
Furthermore, we need to determine the matching coeffi-
cients of both physical and evanescent operators: Since the
UV-renormalized amplitudes still contain IR poles, we
must keep all matrix elements of evanescent operators until
the very end. A powerful cross-check of this procedure
is the explicit cancellation of the remaining IR ϵ poles and
of the QCD gauge parameter ξ in the matching.
Results.—For our numerical analysis, we use the input

values listed in Table I and the jΔBj ¼ 1 Wilson coef-
ficients from Refs. [13–15], and we calculate the running
and decoupling of quark masses and αs with RunDec [58].
In the following, we present the NNLO predictions in

three different renormalization schemes for the overall
factor m2

b [cf. Eq. (4)], whereas the quantity z and the
strong coupling constant are defined in the MS scheme.
The overall factorm2

b is defined in theMS scheme, as a pole

mass, or as a potential-subtracted (PS) mass [62]. The latter
is an example of a so-called threshold mass, with similar
properties as the pole mass, but is nevertheless of short-
distance nature. HabðzÞ and H̃ab

S ðzÞ are adapted accord-
ingly, so that the scheme dependence of Γs

12 is Oðα3sÞ.
Several renormalization and matching scales enter the
prediction for the width difference. We choose μ0 ¼
165 GeV for the matching scale between the SM and
the jΔBj ¼ 1 theory. In our numerical analysis, we choose
μ1 ¼ μb ¼ μc (the renormalization scales at which m̄b and
m̄c are defined) and vary μ1 between 2.1 GeVand 8.4 GeV
with a central scale μ1 ¼ 4.2 GeV. In our analysis, we set
μ2 ¼ mpole

b ¼ 4.75 GeV. It has to be kept fixed, because the
μ2 dependence only cancels in the products of HabðzÞ and
H̃ab

S ðzÞ with their respective matrix elements.
We now discuss the results for ΔΓs=ΔMs. In our three

schemes, we have

ΔΓs

ΔMs
¼ ð3.79þ0.53

−0.58 scale
þ0.09
−0.19 scale;1=mb

� 0.11BB̃S

�0.781=mb
� 0.05inputÞ × 10−3 ðpoleÞ;

ΔΓs

ΔMs
¼ ð4.33þ0.23

−0.44 scale
þ0.09
−0.19 scale;1=mb

� 0.12BB̃S

�0.781=mb
� 0.05inputÞ × 10−3 ðM̄SÞ;

ΔΓs

ΔMs
¼ ð4.20þ0.36

−0.39 scale
þ0.09
−0.19 scale;1=mb

� 0.12BB̃S

�0.781=mb
� 0.05inputÞ × 10−3 ðPSÞ; ð6Þ

where the subscripts indicate the source of the various
uncertainties. The dominant uncertainty comes from the
matrix elements of the power-suppressed corrections
(“1=mb”) [35,39] followed by the renormalization scale
uncertainty from the variation of μ1 in the leading-power
term (“scale”). The uncertainties from the leading-power
bag parameters (“BB̃S”) and from the scale variation in the

TABLE I. Input parameters for the numerical analysis.
The matrix elements of Q and Q̃S are parametrized in terms
of fBs

, BBs
, and B̃0

S;Bs
. The values of the quark masses imply

z̄ ¼ 0.04956, mpole
b ¼ 4.75 GeV, and mPS

b ¼ 4.479 GeV (for a
factorization scale μf ¼ 2 GeV) at NNLO. Numerical results for
the matrix elements of the 1=mb suppressed corrections can be
found in Ref. [39].

αsðMZÞ ¼ 0.1179� 0.001 [59]
mcð3 GeVÞ ¼ 0.993� 0.008 GeV [60]
mbðmbÞ ¼ 4.163� 0.016 GeV [60]
mpole

t ¼ 172.9� 0.4 GeV [59]
MBs

¼ 5366.88 MeV [59]
BBs

¼ 0.813� 0.034 [35]
B̃0
S;Bs

¼ 1.31� 0.09 [35]

fBs
¼ 0.2307� 0.0013 GeV [61]
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1=mb piece (“scale, 1=mb”) are much smaller, and the
variation of the remaining input parameters (“input”) is of
minor relevance.
In Fig. 2, we show the dependence of ΔΓs=ΔMs on the

simultaneously varied renormalization scales μ1 ¼ μb ¼ μc
for the MS and PS schemes. The small contributions
involving four-quark penguin operators are only included
at NLO in both the NLO and NNLO curves. Dotted,
dashed, and solid curves correspond to the LO, NLO, and
NNLO results, respectively. In both schemes, one observes
a clear stabilization of the μ1 dependence after including
higher orders. Furthermore, we observe that the NNLO
predictions (solid lines) in both schemes are close together,
which demonstrates the expected reduction of the scheme
dependence. In the MS scheme, we observe that the LO and
NLO curves intersect close to the central scale. As a
consequence, the NLO corrections are relatively small,
and the NNLO contributions are of comparable size. Close
to 9 GeV, the NNLO contribution is zero, and the NLO
corrections amount to about þ21%. At the same time, the
NNLO predictions for μ1 ¼ 4.2 GeV and μ1 ¼ 9 GeV
differ only by þ5% and þ9% in the MS and PS schemes,
respectively. Note that in the MS scheme, the scale
dependence of the leading-power term drops from þ0

−29%

at NLO to þ5
−10% at NNLO and is now of the same order of

magnitude as the �6% experimental error in Eq. (2). In the
PS scheme, the scale uncertainty is of the same order of
magnitude as in the MS scheme. Note that the scheme
dependence inferred from the MS and PS central values in
Eq. (6) is only 3%. Equation (6) clearly shows that
one needs better results for the 1=mb matrix elements. A
meaningful lattice-continuum matching calls for
NLO corrections to the power-suppressed terms, which
will further reduce the uncertainty labeled with “scale,
1=mb.”
For the pole scheme, we only show the NNLO prediction

in Fig. 2. While we also see a relatively mild dependence on
μ1, the corresponding solid curve lies significantly below
the predictions in the MS and PS schemes. This feature can
be traced back to the large two-loop corrections in the
relation between the MS and the pole bottom quark mass
affecting NNLO contributions as much as the genuine
NNLO corrections, underpinning the well-known issues
with quark pole masses [63–65]. For this reason, we
recommend not using the pole scheme for the prediction
of ΔΓs.
The most precise prediction for ΔΓs is obtained from the

results in Eq. (6) combined with the experimental result
[66] ΔMexp

s ¼ 17.7656� 0.0057 ps−1. Upon adding the
various uncertainties in quadrature, symmetrizing the scale
dependence and averaging the results from the MS and PS
schemes, we obtain

ΔΓs ¼ ð0.076� 0.017Þ ps−1: ð7Þ

The comparison to Eq. (2) shows that the uncertainty is
only about 3 times bigger than that from experiment and is
dominated by the 1=mb corrections.
In Fig. 3, we confront our predictions for the ratio

ΔΓs=ΔMs in the MS scheme (green band) with the
individual predictions of ΔΓs and ΔMs. The latter are
dominated by the uncertainty in the CKM matrix element
Vts which is obtained from Vcb through CKM unitarity and
cancels in the ratio. Figure 3 illustrates this feature with
jV incl

cb j ¼ 42.16ð51Þ × 10−3 from Ref. [67] and jVexcl
cb j ¼

39.36ð68Þ × 10−3 from Ref. [68]. The current experimental
results for ΔΓs and ΔMs are indicated by the black bar.
Once the prediction of ΔΓs=ΔMs is improved further, it
will be possible to test the SM without CKM uncertainty,

FIG. 2. Renormalization scale dependence at LO, NLO, and
NNLO for the MS and PS schemes. The scale in the power-
suppressed terms is kept fixed. The gray band represents the
experimental result.

FIG. 3. ΔΓs versus ΔMs. The jVcbj controversy (red vs blue
vertical and orange vs purple horizontal strips) prevents any
conclusion on possible new physics in ΔMs. A combined
analysis of ΔMs and ΔΓs adds important information, because
the SM prediction of ΔΓs=ΔMs (green wedge) is independent of
jVcbj.
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and with progress on jVcbj, one will be able to constrain
new physics in ΔMs and ΔΓs individually.
Conclusions.—The SM prediction of ΔΓs=ΔMs based

on the long-standing NLO calculation has two sources of
uncertainty which exceed the experimental error: the
hadronic matrix elements of the power-suppressed oper-
ators and the perturbative coefficients, as inferred from the
scale and scheme dependence of the calculated result. With
the NNLO calculation presented here, we have brought the
latter uncertainty to the level of the accuracy of the
experimental result. For this we had to calculate 20 000
three-loop diagrams and to solve subtle problems related to
the interplay of infrared divergences and evanescent oper-
ators. We have pointed out that ΔΓs adds information to the
usual study ofΔMs, because both quantities probe different
new-physics scenarios and jVcbj drops out in the ratio
ΔΓs=ΔMs.
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