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We point out that an infinite class of Witten diagrams is invariant under a Yangian symmetry. These
diagrams are building blocks of holographic correlators and are related by a web of differential recursion
relations. We show that Yangian invariance is equivalent to the consistency conditions of the recursion
relations.
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Introduction.—Recently, there has been much progress
in computing holographic correlators, which are the most
basic observables for exploring and exploiting the
AdS=CFT correspondence. For example, all four-point
correlators of 1

2
-BPS operators with arbitrary Kaluza-

Klein weights are known at tree level in all maximal
supergravity theories [1–4] and super Yang-Mills theory
(SYM) in AdS [5]. Examples of higher-point correlators
have also been obtained in AdS5 [6,7]. While these results
are highly impressive, they are all obtained by using
essentially the same kind of method, namely, the bootstrap
approach which imposes superconformal symmetry and
physical consistency conditions [8]. It is important to
ask if there are other independent guiding principles which
allow us to efficiently compute holographic correlators.
Particularly, in the paradigmatic example of the AdS=CFT,
the 4d N ¼ 4 SYM theory, which is dual to IIB string
theory in AdS5 × S5, is known to be integrable in the planar
limit. It is natural to wonder if integrability can play a role
in the study of holographic correlators. Unfortunately, the
standard integrability techniques are known to have diffi-
culties in the supergravity regime [10]. As a result, a
concrete relation between integrability and holographic
correlators remains elusive. However, in this paper, we will
provide hints for such a relation by pointing out that an
infinite class of Witten diagrams in AdS enjoys a Yangian
symmetry, which is a hallmark of integrability. While we
consider only bosonic symmetry here, we hope that the
analysis can be generalized to the supersymmetric case
as well.

More precisely, we consider the contact Witten diagrams
depicted in Fig. 1, which appear naturally in holographic
models of boundary CFTs. The vertical co-dimension 1
surface is the holographic dual of the boundary. When all
insertions are moved to the boundary, the diagrams are fully
within the AdSd subspace and reduce to the so-called
D-functions in the AdS=CFT literature. These contact
Witten diagrams are the building blocks of holographic
correlators. As we will show, these diagrams can be
identified with the following conformal Feynman integral
in D-dimensional flat space

In ¼
Z

dDx0Q
n
j¼1ðx2j0 þm2

jÞΔi
; ð1Þ

where xμij ¼ xμi − xμj , x
2
ij ¼ xμijxij;μ, and

P
n
i¼1 Δi ¼ D. The

perpendicular distances xi;⊥ are identified with the masses
mi. These integrals, which generalize box diagrams, are
remarkably invariant under the conformal Yangian algebra.
The discovery of this property was motivated by special
cases of such diagrams appearing in the so-called fishnet
theories which are known to be integrable [16–19].
Integrability of (1) was first proven in the massless case,
for integrals with n ¼ 4, 6. The proof was streamlined and

FIG. 1. A contact Witten diagram in Poincaré coordinates.
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extended to the massive case in [20,21], where it was
shown that all such integrals are Yangian invariant. Since
contact Witten diagrams are essentially In, it follows that
they are Yangian invariant as well. On the other hand, we
will show that the contact Witten diagrams satisfy an
intricate web of differential recursion relations shifting
the weightsΔi. For example, there are differential operators
Oij which shift Δi and Δj by 1

OijW ∝ WjΔi;j→Δi;jþ1; ð2Þ

For these relations to be consistent, the action of OijOkl

must be equal to that of OikOjl as they lead to the same
contact Witten diagram. This imposes nontrivial constraints
on W. Remarkably, we find that the full set of consistency
conditions is precisely the Yangian invariance condition.
Yangian generators.—The Feynman integrals (1) are

invariant under the conformal group SOðD; 2Þ which is
generated by Ja ¼ P

n
j¼1 J

a
j. Here Jaj are single-site gene-

rators acting on xj

Pμ̂j ¼ −i∂μ̂xj ; Lμ̂ ν̂
j ¼ ixμ̂j∂

ν̂
xj − ixν̂j∂

μ̂
xj ;

Dj ¼ −iðxj;μ∂μxj þmj∂mj
þ ΔjÞ;

Kμ̂
j ¼ −2ixμ̂j ðxj;ν∂νxj þmj∂mj

þ ΔjÞ þ iðx2j þm2
jÞ∂μ̂xj ; ð3Þ

and μ runs from 1 to D. The index μ̂ runs from 1 to Dþ 1,
but only μ̂ ¼ 1;…; D correspond to the symmetries of In.
Note that with μ̂ ¼ 1;…; Dþ 1, (3) are the SOðDþ 1; 2Þ
conformal generators in Dþ 1 dimensions where the
(Dþ 1)th dimension is xDþ1 ¼ m. Conformal symmetry
is partially broken along this dimension to SOðD; 2Þ. The
symmetry breaking is exactly the same as inserting a
boundary at xDþ1 ¼ 0.
The massive Yangian is generated by the above level-

zero generators and the following level-one generators [22]

Ĵa ¼ 1

2
fabc

Xn
j<k

JcjJ
b
k þ

Xn
j¼1

sjJaj ; ð4Þ

where fabc are the structure constants and si are the eva-
luation parameters. The integrals In are annihilated by the
level-one generators, and consequently the entire Yangian.
Moreover, In are invariant under level-zero generators and
the level-one generators are in the adjoint representation of
the level-zero algebra. It is therefore sufficient to require
that In is annihilated by the level-one momentum operators
P̂μ. Furthermore, because (1) also has permutation sym-
metry, invariance under Ĵa is equivalent to invariance under
any two-site operators [21]

Ĵajk ¼
1

2
fabcJcjJ

b
k þ

Δk

2
Jaj −

Δj

2
Jak: ð5Þ

In terms of Ĵajk, Ĵ
a can be written as Ĵa ¼ P

n
k>j¼1 Ĵ

a
jk. The

momentum operator is given by

P̂μjk ¼
i
2
½PμjDk þ Pj;νL

μν
k − iΔkP

μ
j − ðj ↔ kÞ�: ð6Þ

Using (3), we can write it explicitly as

P̂μjk ¼
i
2
½Xνμρ

∂xj;ρ∂xk;ν þ ð2Δj þmj∂mj
Þ∂μxk

− ð2Δk þmk∂mk
Þ∂μxj �; ð7Þ

where

Xνμρ ¼ xνjkη
μρ þ xρjkη

μν − xμjkη
νρ: ð8Þ

In addition to the above operators Ĵajk, it was observed in
[20] that In are also annihilated by an extra set of bilocal
operators Ĵaextra;jk. For example,

P̂μjk;extra ¼
i
2
½Pj;Dþ1L

μ;Dþ1
k − ðj ↔ kÞ�

¼ i
2
½∂mj

xμk∂mk
− ∂mj

mk∂
μ
xk − ðj ↔ kÞ�: ð9Þ

Here, we have written down a mass mi for each site i. The
massless (or partially massless) case is obtained by just
setting the masses to zero.
Witten diagrams.—The contact Witten diagram in Fig. 1

is defined as an integral over AdSd

W ¼
Z

dz0dd−1z⃗
zd0

Yn
i¼1

GΔi
B∂ðz; x⃗i; miÞ; ð10Þ

where GΔi
B∂ are the bulk-to-boundary propagators

GΔi
B∂ðz; x⃗i; miÞ ¼

�
z0

z20 þ ðz⃗ − x⃗iÞ2 þm2
i

�
Δi

: ð11Þ

These diagrams arise in holographic models of boundary
CFTs or interface CFTs where the defect is a probe brane
[24–28]. They are generated by contact vertices which are
localized on the AdSd subspace. When all masses are zero,
W reduces to the D function DΔ1;…;Δn

in AdSd. Note that
unlike the Feynman integral In, there is no constraint
relating Δi and d. The conformal invariance of W is
inherited from the isometry of AdS. These contact dia-
grams have been systematically studied in [28] and we will
use its results to establish the equivalence between W
and In.
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A particularly useful representation of W is [28]

W ¼ Cn

Z
∞

0

Yn
i¼1

dtit
Δi−1
i e−

P
i<j

titjPij−ð
P

n
i¼1

timiÞ2 ; ð12Þ

which is obtained by using the Schwinger parametrization
and integrating out the AdS coordinates. Here, Cn ¼
πððd−1Þ=2ÞΓ½ððPn

i¼1Δi − dþ 1Þ=2Þ�Qn
i¼1 Γ−1½Δi� is a coef-

ficient and we have defined

Pij ¼ x2ij þ ðmi −mjÞ2: ð13Þ

An important consequence of (12) is that contact Witten
diagrams are dimension independent after factoring out a
numerical coefficient

W̃ ¼ C−1
n W: ð14Þ

On the other hand, if we integrate out only the radial
coordinate z0, we find

W̃ ¼ π
1−d
2

2

Z
dd−1z⃗

Z
∞

0

Yn
i¼1

dtit
Δi−1
i

×

�Xn
i¼1

ti

�d−1−
P

n
i¼1

Δi
2

e−
P

n
i¼1

tiððz⃗−x⃗iÞ2þm2
i Þ: ð15Þ

Using the d independence of W̃, we can conveniently set
d ¼ Dþ 1. Then (15) is nothing but the conformal integral
In after using the Schwinger parametrization

W̃ ¼ π−
P

n
i¼1

Δi
2

Q
n
i¼1 Γ½Δi�

2
In: ð16Þ

Since the integrals In are invariant under the Yangian
[20,21,29], the contact Witten diagrams W are Yangian
invariant as well.
Recursions and consistency conditions.—The represen-

tation (12) also makes the recursion relations of Witten
diagrams manifest. Let us denote

Oij ¼
∂

∂Pij

����
P;m

; Ni ¼
∂

∂mi

����
P;m

ð17Þ

as the partial derivatives, where Pij, mi are regarded as the
independent variables. Then Ni is related to ∂mi

in (3),
where xμi and mi are regarded as the independent vari-
ables, by

mi∂mi
¼ Di þ 2

X
j≠i

m2
iOij; ð18Þ

and we have defined

Di ¼ miNi − 2
X
j≠i

mimjOij: ð19Þ

From the integral representation (12), it is obvious that we
have the following differential recursion relations

OijW ¼ 2ΔiΔj

d − 1 −
P

iΔi
W

����
Δi;j→Δi;jþ1

; ð20Þ

DiW ¼ 4m2
iΔiðΔi þ 1Þ

d − 1 −
P

iΔi
W

����
Δi→Δiþ2

; ð21Þ

which shift the conformal dimensions. These relations
generalize the well-known weight-shifting relations of D
functions [30]. However, the relations (20) and (21) must
give the same answer when reaching the same point in
weight space following different paths. This gives rise to
the following consistency conditions

ðOijOkl −OikOjlÞW ¼ 0; i; l ≠ j; k; ð22Þ

DiOklW ¼ 2m2
iOikOilW; i; j; k all different; ð23Þ

DjDkW ¼ 4m2
jm

2
kOjkOjkW; j ≠ k: ð24Þ

Note that these conditions are also satisfied by In because
they are identical to W up to overall coefficients.
Let us also mention that the conformal invariance of

Witten diagrams implies the following relations

ðmiNi þ PijOijÞW ¼ −ΔiW: ð25Þ

These conditions can be easily derived in the embedding
space formalism and they follow from requiringW to scale
correctly when independently rescaling the embedding
vector of each operator [28]. The details can be found in
the Supplemental Material [31]. It is conceivable that the
conditions (22), (23), (24) should also have a symmetry
origin. Since only conformal symmetry is involved in this
setup, the natural guess, as will be verified, is the conformal
Yangian.
Yangian constraints as consistency conditions.—We

now show that the Yangian invariance conditions

P̂μjkW ¼ 0; ð26Þ

P̂μjk;extraW ¼ 0; ð27Þ

are equivalent to the consistency conditions of the recursion
relations (22), (23), (24). Instead of working with cross
ratios, which spoils manifest permutation symmetry, we
work with the variables Pij and mi. Then, using
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∂
μ
xj ¼ 2

X
i≠j

xμjiOij;

∂
ρ
xj∂

ν
xk ¼ 4

X
i≠k

X
l≠j

xρjlx
ν
kiOjlOki − 2ηρνOjk; ð28Þ

and (18) we can take all derivatives with respect to Pij and
mi. We will find that the action of the operators can be
written in the form

−2iP̂μjkW ¼
X
a<b

Tμ
abEab;

−2iP̂μjk;extraW ¼
X
a<b

Tμ
abEab;extra; ð29Þ

where Tμ
ab ¼ ðxμab=PabÞ. The coefficients Eab, Eab;extra have

the same scaling dimensions asW. It was shown in [21] that
Tμ
ab are linearly independent with respect to coefficients

which are functions of cross ratios [32]. Yangian invariance
then requires that all coefficient functions Eab, Eab;extra

must vanish separately. The upshot is that these conditions
boil down to the three basic relations (22), (23) and (24).
The massless case.—For simplicity, let us first demon-

strate the equivalence for the massless case, i.e., mi ¼ 0,
which is relevant for D functions in pure AdS. Note that
P̂μjk;extra vanishes in this case so we have only (26) with mi

set to zero. From (7) it is not difficult to see that almost all
terms are already in the form of (29), except for those
coming from the contraction with Xνμρ. To proceed, we
note the following useful identity

Xνμρxρjlx
ν
ki ¼

1

2
ðTμ

jkPjkPli − Tμ
jiPjiPkl − Tμ

jlPjlPki

þ Tμ
kiPkiPjl þ Tμ

klPklPij − Tμ
ilPilPjkÞ: ð30Þ

We then find all the coefficient functions are given by

Eil ¼ −2PilPjkðOjlOik −OjiOklÞW; ð31Þ

Eki ¼ 2

�X
l≠j;k

PkiPjlOjlOki þ 2PkiPjkOjkOki

þ
X
l≠j;k

PkiPjlOjiOkl þ 2ΔjPkiOki

�
W; ð32Þ

Ejl ¼ −Ekijj↔k;i↔l; ð33Þ

Ejk ¼ 2

�X
i;l≠j;k

PjkPilOjlOki − 2P2
jkOjkOjk

− ð2 −Dþ 2Δj þ 2ΔkÞPjkOjk

�
W; ð34Þ

where i; l ≠ j, k [33]. From Eil ¼ 0, we reproduce the
consistency condition (22). Since (23) and (24) are

identically zero on both sides in the massless limit, the
remaining conditions must not produce nontrivial con-
straints. To show Eki ¼ 0, we first use (22) to write Eki as

Eki¼4

�X
l≠j;k

PkiPjlOjlOkiþPkiPjkOjkOkiþΔjPkiOki

�
W:

ð35Þ

Then using the massless limit of (25) we find that Eki
vanishes. Symmetry implies that Ejl ¼ 0 as well. To see
Ejk ¼ 0, we use permutation symmetry and (22) to write

X
i;l≠j;k

PjkPilOjlOkiW ¼
X
i;l≠j;k

PjkPilOjkOilW:

From (25) we also have

X
i;l≠j;k

PilOilW ¼ ð−Dþ 2Δj þ 2Δk þ 2PjkOjkÞW;

where we have used D ¼ P
n
i¼1Δi. It is then clear that Ejk

also vanishes.
The massive case.—Having proven the equivalence in

the massless limit, let us now move on to the general case.
We first focus on the condition (26) where the proof is
similar to the massless case above. To cast the action of P̂μjk
in the form of (29), let us use the following massive version
of (30)

Xνμρxρjlx
ν
ki ¼

1

2
ðTμ

jkPjkPli − Tμ
jiPjiPkl − Tμ

jlPjlPki

þ Tμ
kiPkiPjl þ Tμ

klPklPij − Tμ
ilPilPjkÞ

þ xμjlmkðmk −miÞ − xμkimjðmj −mlÞ
þ xμijmkml þ xμjkmiml þ xμklmimj þ xμlimjmk:

We find the coefficient functions are

P−1
il Eil ¼ −2ðPjk þ 2mjmkÞðOjlOki −OjiOklÞW; ð36Þ

P−1
ki Eki ¼ 2

�
ð2Δj þmjNjÞOki þ 2mjmkOjkOki

þ
X
l≠k

ðPjl þ 2mlmjÞOjiOkl þ
X
l≠j

PjlOjlOki

þ PjkOjkOki

�
W; ð37Þ

P−1
jl Ejl ¼ −P−1

ki Ekijj↔k;i↔l; ð38Þ
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P−1
jk Ejk¼2

�X
i;l≠j;k

PilOjlOki−2PjkOjkOjk

þðD−2−2Δj−2Δk−mjNj−mkNkÞOjk

þ2
X
i≠k

X
l≠j

mimlOjlOki−2mjmkOjkOjk

�
W; ð39Þ

with i; l ≠ j, k. Requiring (36) to vanish, we recover the
first consistency condition (22). Following similar mani-
pulations as in the massless case, which are detailed in the
Supplemental Material [31], we find from Eki ¼ 0 the
second consistency condition (23). However, the condition
from the coefficient (39) yields no further constraint. In
fact, we find that Ejk ¼ 0 follows from (22) and (23). To
derive the last consistency condition (24), we must examine
the extra contraint (27). The explicit operator action reads

−2imjmkP̂
μ
jk;extraW ¼ −xμjkmj∂mj

mk∂mk
W

− 2
X
l≠k

xμklOklm2
kmj∂mj

W

þ 2
X
i≠j

xμjiOjim2
jmk∂mk

W; ð40Þ

where mj∂mj
should be expressed in terms of Dj and Oij

using (18). Naively, the form of (40) seems to be in
contradiction with (29). However, this expression can be
greatly simplified upon using (22), (23) and the conformal
invariance condition (25) (see Supplemental Material [31]).
We find that all Eab;extra vanish except for Ejk;extra

Ejk;extra ¼ −PjkðDjDk − 4m2
jm

2
kOjkOjkÞW; ð41Þ

which gives the last condition (24).
Discussions and outlook.—In this Letter, we established

a new connection between integrability and holography by
reinterpreting Yangian invariant Feynman integrals as
Witten diagrams in AdS. We also provided an interesting
reformulation of the Yangian constraints as the consistency
conditions of weight-shifting relations satisfied by Witten
diagrams. These conditions are obtained explicitly as (22),
(23), (24), and are valid for arbitrary n-point functions.
Compared to the original Yangian invariance constraints
(26) and (27), these conditions no longer contain redun-
dancies and are much simpler to exploit (e.g., to explicitly
compute In as power series [20,21]). The remarkable
simplicity of these conditions might also provide further
insight into their underlying structures and hopefully open
a door to applying the full power of integrability methods to
holographic correlators.
There are plenty of future directions worth exploring.

First, we only focused on contact Witten diagrams which
correspond to one-loop Feynman integrals. It would be
interesting to study Yangian symmetry in exchange Witten

diagrams. Certain two-loop Feynman integrals are also
known to be Yangian invariant [20,21,29] and coincide
with exchange Witten diagrams when conformal dimen-
sions satisfy special conditions [34,35]. However, the
general story is still unclear at the moment. Second, another
exciting research avenue is to extend the analysis to include
supersymmetry. The superconformal Yangian constraints
should be highly nontrivial and will presumably select
“superspace D-functions” with quantized dimensions as
their solutions. It would be extremely interesting to see if
these superconformal Yangian constraints can be used as an
alternative method to rederive the general results of holo-
graphic four-point correlators of IIB supergravity in
AdS5 × S5 [1,2]. Finally, Witten diagrams also play an
important role in the analytic functional approach to the
conformal bootstrap where they serve as generating func-
tions for the analytic functionals [36–42]. It would be
interesting to explore the consequence of Yangian sym-
metry in that context.
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