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We present a recursive formula for the computation of the static effective Hamiltonian of a system under
a fast-oscillating drive. Our analytical result is well-suited to symbolic calculations performed by a
computer and can be implemented to arbitrary order, thus overcoming limitations of existing time-
dependent perturbation methods and allowing computations that were impossible before. We also provide a
simple diagrammatic tool for calculation and treat illustrative examples. By construction, our method
applies directly to both quantum and classical systems; the difference is left to a low-level subroutine. This
sheds light on the relationship between seemingly disconnected independently developed methods in the
literature and has direct applications in quantum engineering.
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Driven nonlinear systems display a rich spectrum of
phenomena which includes bifurcation, chaos, and topo-
logical order [1,2]. Their behavior is often counterintuitive
and, beyond fundamental interest [3], yields important
applications. A classic example is the Kapitza pendulum
[4]. This system inverts its equilibrium position against
gravity when driven by an appropriate fast-oscillating
force and serves as a model for dynamical stabilization
of mechanical systems [5]. The potency for novel appli-
cations transcends classical physics; recently the dynami-
cal stabilization of a Schrödinger cat manifold [6–8],
despite its famous fragility [9], has opened new perspec-
tives for large-scale quantum computation [10]. In the
promising field of quantum simulation, Floquet engineer-
ing of potentials [11] in ultracold atom experiments has
permitted the realization of novel quantum systems with
exotic properties unachievable otherwise [12]. Other
important related phenomena are discrete time crystals
[13] and many-body dynamical localization [14], just to
name a few.
In general, driven nonlinear systems do not admit closed

form solutions for their time evolution. But remarkably,
under a rapid drive, their dynamics can be mapped to that
generated by a time-independent effective Hamiltonian.
This “Kamiltonian” [15] describes a slow dynamics of the
system, corrected only perturbatively by a fast micro-
motion. Over the last century, different perturbation meth-
ods have been developed to construct such effective
Hamiltonians and have succeeded in explaining several
important nonlinear dynamical phenomena [1,16–20].
However, these perturbation methods can hardly be carried
out beyond the lowest orders in practice and a clear
understanding of the connection between many of these
methods is missing [21,22]. The differences are exacer-
bated by the wide disparity in starting points of the classical
[17,23,24] and quantum methods [18,20,25–30].

In this Letter, we construct a time-independent
Kamiltonian perturbatively by seeking a pertinent canoni-
cal transformation. The small parameter of the expansion is
the ratio of the typical rate of evolution of the driven system
to the frequency of the driving force. We present a recursive
formula for the Kamiltonian that allows its calculation to
arbitrary order and is well suited for symbolic manipula-
tion. It can be applied indifferently to the classical and
quantum cases, the change involving only a low-level
subroutine of the symbolic algorithm. Our result unifies
existing methods that have been developed solely in either
the classical or quantum regimes.
We start with the equations governing time evolution of

the classical or quantum state vector ρ under the action of a
time-dependent Hamiltonian HðtÞ that we write jointly as

∂tρ ¼ ffH; ρgg; ð1Þ
where the double bracket can be understood as

ffH; ρgg →

(
fH̃; ρ̃g classicalðLiouvilleÞ;
1
iℏ ½Ĥ; ρ̂� quantumðvon NeumannÞ: ð2Þ

Here, we have adopted the standard notation f□;□g for
the Poisson bracket over phase-space coordinates q and p
and ½□;□� for the Hilbert space commutator. The state
vector ρ can be taken to be either a phase-space distribution
ρ̃ðq; pÞ or the density operator ρ̂ ¼ P

x0;x00 ρx0x00 jx0ihx00j. Its
time evolution is governed by the Hamiltonian H which is
either the phase-space Hamiltonian H̃ðq; p; tÞ or the
operator Ĥðq; p; tÞ. We note that one can also interpret
ff□;□gg as the Moyal bracket [31–33], in which case
Eq. (1) describes the dynamics of the phase-space Wigner
distribution.
In this formalism agnostic to the nature of the system, we

seek a canonical transformation ρ → ϱ such that the time
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evolution of ϱ is governed, in the transformed frame, by the
sought-after time-independent Kamiltonian. We thus con-
sider the Lie transformation generated by a time-dependent
generator S and parametrized by ϵ,

ϱ ¼ eϵLSρ ¼
X
k¼0

ϵkLk
S

k!
ρ;

¼ ρþ ϵffS; ρgg þ ϵ2

2!
ffS; ffS; ρgggg þ � � � ; ð3Þ

where LS□ ¼ ffS;□gg is the Lie derivative [34–38]
generated by S. Here, S is either a real phase-space
function S̃ðq; p; tÞ or an Hermitian operator Ŝðq; p; tÞ.
Equivalently, the transformed state ϱ is the solution to
the differential equation ∂ϵϱ ¼ ffS; ϱgg, with initial con-
dition ϱðϵ ¼ 0Þ ¼ ρ.
In the transformed representation, the dynamics obeys

formally (1) as ∂tϱ ¼ ffK; ϱgg, with the Kamiltonian K
given by

K ¼ eLSH þ
Z

1

0

dϵ eϵLS _S; ð4Þ

see Supplemental Material [39], Sec. A for the derivation.
Note that in the quantum case, Eq. (4) reduces to the familiar
expression K̂ ¼ Û†ðĤ − iℏ∂tÞÛ with Û ¼ e−Ŝ=iℏ [40].
We now carry out a perturbative expansion generated by

S, while imposing that K is rendered time independent. The
transformation of the time evolution from ρ → ϱ is repre-
sented schematically in Fig. 1 and yields

ρ ¼ T e
R

t

t0
dt0LHðt0Þρ0

¼ eL−SðtÞeLKðt−t0ÞeLSðt0Þρ0; ð5Þ

where T is the time-ordering operator and ρ0 is the initial
state. The time evolution of ρ underH (a Lie transformation
generated by H and parametrized by t) can be understood
as being decomposed into three successive Lie transfor-
mations generated by Sðt0Þ, K, and −SðtÞ. Under this
decomposition, the time-ordering operator drops out in
the time evolution under K, providing an important
simplification.
To carry out the perturbative expansion, we consider the

Hamiltonian

HðtÞ ¼
X
m∈Z

Hmeimωt ð6Þ

with period T ¼ 2π=ω. For the perturbative treatment
to be valid, the rate of evolution under any one Hm needs
to be much smaller than ω. In the case of an unbounded
Hamiltonian, either quantum or classical, the correspond-
ing space will require truncation. We focus on the case of
a periodic drive for simplicity, but we note that our
treatment can be generalized to include quasiperiodic or

nonmonochromatic drives; see Supplemental Material [39],
Sec. B III for a concrete example. We take the following
Ansatz for S and K:

S ¼
X
n∈N

SðnÞ; K ¼
X
n∈N

KðnÞ; ð7Þ

where we take Sð0Þ ¼ 0 and the nth terms to be of order n in
the perturbation parameter, here taken to be 1=ω [11,27].
Substituting Eqs. (7) into Eq. (4) separates the problem
into orders of 1=ω. At each order, KðnÞ can further be
expressed as a sum of terms generated by a Lie series as in

Eq. (3), which we write as KðnÞ ¼ P
k K

ðnÞ
½k� . Demanding K

to be time independent to all orders, we find, after a
few lines of algebra, the following coupled recursive
formulas:

KðnÞ
½k� ¼

8>>>>><
>>>>>:

H n ¼ k ¼ 0

_Sðnþ1Þ þ LSðnÞH k ¼ 1P
n−1
m¼0

1
k LSðn−mÞKðmÞ

½k−1� 1 < k ≤ nþ 1

0 otherwise;

ð8aÞ

Sðnþ1Þ ¼

8>>><
>>>:

−
R
dt oscðHÞ n ¼ 0

−
R
dt osc

�
LSðnÞH

þPnþ1
k>1

P
n−1
m¼0

1
k LSðn−mÞKðmÞ

½k−1�
�

n > 0;

ð8bÞ

under

time 

Lie 
deformationphase space 

coordinates

under

FIG. 1. Time evolution of the state vector in the transformed
(ϵ ¼ 1) and untransformed (ϵ ¼ 0) frames. The red curve
represents the complicated time evolution of ρ under the time-
dependent H. The blue curve represents the simpler time
evolution of ϱ under the time-independent K. The transformation
is exact. Under a sufficiently fast oscillating drive, the fast
micromotion captured by S can be neglected and K can be taken
to generate the time evolution of ρ in the untransformed frame.
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where oscðfÞ ≔ f − f̄, and f̄ ¼ 1
T

R
T
0 dt f. Note that H is

taken to be of order zero in the perturbation parameter, but
this hypothesis can be relaxed in a more elaborate treat-
ment; see Supplemental Material [39], Sec. B III.
By construction, taking the time-derivative of Eq. (8b),

substituting the result into Eq. (8a), and summing over k
yields a time-independent KðnÞ. All in all, the computations
of K and S are interleaved so that the computation of KðnÞ

requires as an input the value of Sðm≤nÞ. Demanding the
time-independence of KðnÞ fixes _Sðnþ1Þ, allowing the
recursion to be carried out to the next order. The coupled
recursive formula in Eq. (8) constructs, as announced, S
and K order by order.
The mathematical structure of the recursive formula

Eq. (8) is shown diagrammatically in Fig. 2, as we now
explain. The figure consists of a grid indexed by the
integers n and k. The grid supports a graph. Each node

ðn; kÞ of the graph corresponds to a summand KðnÞ
½k� , and the

colored ones represent the “seeds” of the calculation. The

summand KðnÞ
½k� is itself a sum of terms, each corresponding

to a path connecting the node ðn; kÞ to a seed. Evaluating a
path corresponds to taking Lie derivatives over H or _Sðnþ1Þ

as dictated by the seed color. The rule is that each Lie
derivative is specified by a valid subpath, which must start
“downwards” and, when followed bym horizontal edges at
row k, contributes with LSðmþ1Þ=k. Finally, if the considered
node is itself colored, either H or _Sðnþ1Þ must be added to
the sum. We note that our grid construction is inspired by

Ref. [41], where the construction is limited to completely
classical and time-independent systems.
Let us discuss, as an example, howKð3Þ

½3� is evaluated from
the figure. As indicated by panel Fig. 2(b), Kð3Þ

½3� contains

only four terms corresponding to the concatenations of the
valid subpaths (in blue). The sum reads

Kð3Þ
½3� ¼

LSð1Þ

1

LSð1Þ

2

LSð1Þ

3
H þ LSð1Þ

2

LSð1Þ

3
_Sð2Þ

þ LSð1Þ

2

LSð2Þ

3
_Sð1Þ þ LSð2Þ

2

LSð1Þ

3
_Sð1Þ; ð9Þ

where the terms are ordered as enumerated in the figure.
Alternatively, one could have expressed Kð3Þ

½3� recursively
by directly applying Eq. (8a). The computation of Kð3Þ

½3� then
involves only the two pink subpaths shown in Fig. 2(c) and
yields

Kð3Þ
½3� ¼

LSð2Þ

3
Kð1Þ

½2� þ
LSð1Þ

3
Kð2Þ

½2� : ð10Þ

At this stage, once all entries of the nth column are
computed, the calculation proceeds by demanding the
time-independence of KðnÞ computed as their row-sum
over column n and represented by the vertical bold lines in
Fig. 2(a). This is required by Eq. (8b). For the column
n ¼ 3 the algorithm yields

Sð4Þ ¼ −
Z

dt oscðLSð3ÞH þ Kð3Þ
½2� þ Kð3Þ

½3� þ Kð3Þ
½4� Þ; ð11Þ

which is a necessary ingredient to compute Kð5Þ and so, the
calculation proceeds.
We further illustrate our formulation by treating three

concrete examples in the Supplemental Material [39].
First, in Sec. B I, we treat a standard dynamical system:

the Kapitza pendulum. Previous works [4,21] find the
effective Hamiltonian in the classical case by averaging its
equation of motion. This method is known to become
unwieldy, even at the lowest orders, and moreover lacks an
equivalent quantum counterpart, which veils any compari-
son to a quantum effective Hamiltonian. We apply Eq. (8)
to the Kapitza pendulum to find both the classical and
quantum effective Hamiltonians, which, to our knowledge,
is 2 orders beyond what is available in previous literature.
Only by going to such a high order, are we able to locate
terms in the quantum static effective Hamiltonian that
cannot be obtained by any quantization prescription
[42–44] applied to its classical counterpart: a consequence
of Groenewold’s theorem [31]. This result explains the
difficulty encountered in stating the quantum-classical
correspondence in the context of effective Hamiltonians
[21,22], underlining the necessity of exploiting the shared
underlying Lie algebra.

(a)
(b)

(c)

FIG. 2. (a) Grid for the diagrammatic construction of K and S.
Colored circles represent the seeds generating the series to all
orders. (b) As an example, all the paths contributing to the

calculation of Kð3Þ
½3� are highlighted. (c) Here, only the subpaths

contributing to the recursive expression of the aforementioned
term are highlighted.
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Second, in Sec. B II, we treat a driven Duffing oscillator,
an archetype of several driven superconducting circuits,
and find the effective Hamiltonian to order 5 in the
perturbation parameter. In particular, we focus on the
renormalization of the frequency and Kerr coefficients of
the oscillator in the presence of the drive. We demonstrate
with this toy example the convergence of our series to
numerical simulations obtained via exact Floquet numeri-
cal diagonalization [39].
Finally, in Sec. B III, we show the remarkable agreement

with state-of-the-art experiments [45] that independently
measured the effective Hamiltonian of a driven transmon-
cavity superconducting circuit [46] and could only be
analyzed numerically until our work. With this final
example, we demonstrate the generality of the recursive
formula: by applying it to a multimode, nonmonochromatic
Hamiltonian, and developing the expansion for a perturba-
tion parameter other than 1=ω, we are able to predict and
explain to a high accuracy the measured effective
Hamiltonian even at large intracavity photon numbers.
We stress again that Eq. (8) is agnostic to the choice of

Lie bracket in Eq. (2). A Lie-based formulation is thus
well suited to unify seemingly disconnected perturbation
methods, in particular those that, to be linked, require the
quantum-classical correspondence to be made explicit.
Exploiting this property, we now turn to discuss the

connection between several time-dependent perturbation
methods developed independently. We consider their
common starting point to be the additive Ansatz

Z ¼ Z þ ζðZ; cZÞ; ð12Þ

where Z is the state variable, cZ is the conjugate variable to
Z, and ζ is a correction. For time-varying problems, it is
customary to take Z to describe the slow dynamics and the
correction to describe the fast dynamics with vanishing
time average (ζ̄ ¼ 0). To compute ζ, different methods
proceed in vastly different ways: the classical ones rely on
partial derivatives of phase-space functions [4,21,23,24];
this draws a line separating them from the quantum
methods which rely on matrix products [21,25–29].
These procedural differences hide their shared structure.
We uncover the connection between these methods by

realizing that the procedural differences stem from
premature specifications of a particular Lie bracket.
Identifying this feature allows us to relate the correction
ζ, specified by each method, to the generator S of the
Lie transformation as ζ ¼ ðeL−S − IÞZ. In other words,
the Ansatz in Eq. (12) corresponds to the additive repre-
sentation of the exponential map in Eq. (3). It follows that,
if carried out to all orders, these methods correspond to
invertible canonical transformations. See Sec. C of the
Supplemental Material [39] for a detailed discussion on the
relationship between the different Ansätze.

In Fig. 3, we show how we can collect seemingly
disconnected perturbation methods and unify them under
the umbrella of Lie series. The two main branches, colored
in red (right) and blue (left), group the quantum and
classical methods. The ones based on equations of motion
(EOM) correspond to different choices of Z in Eq. (12).
Among the quantum methods, secular averaging theory
[47] corresponds to Z ¼ ρ̂. The perturbative expansion
can also be developed at the level of the wave function
Z ¼ jϕi, allowing for the derivation of higher-order rotat-
ing wave approximations [26]. In this case, the Ansatz is
Z ¼ jφi and ζ ¼ δ̂jφi and it can be mapped to our
approach by taking ζ ¼ ðe−Ŝ=iℏ − 1Þjφi. This last relation
can be understood by noting that in the quantum case
Eq. (3) reduces to eLS ρ̂ ¼ e−Ŝ=iℏρ̂eŜ=iℏ. Classically, the
Krylov-Bogoliubov (KB) method [4,17,21,23,24] averages
the equation of motion of the position coordinate Z ¼ q

quantum

deg. “van Vleck’’ exp. [21, 27, 29]

classical

H
our result Eq. (8)

“harmonic balance’’ [17]

arbitrary

E
O
M

perturbation methods 
stemming from Lie series

E
O
M

H

“Krylov-Bogoliubov’’ avg. [4,17,21,

   23, 24]

“secular averaging thy.’’ [47]

“higher-order RWA’’ [26]

“Floquet-Magnus’’ exp. [25]

FIG. 3. Relationship between various perturbation methods for
systems submitted to a time-dependent oscillatory drive. All the
methods in the tree can be seen as falling under the umbrella of
Lie series. The methods can be divided between classical (blue
lines, left) and quantum (red lines, right) ones. Other forks
separate the methods based on the EOM from the methods based
on the Hamiltonian (H). The dashed lines refer to a class of
methods whose effective Hamiltonians have not yet been iden-
tified and they are left for future work. The methods labeled by a
Z symbol are additive Ansatz-based unlike the methods con-
taining S which can be thought as multiplicative. For the
Hamiltonian methods, the associated integration constant for S
in Eq. (8b) is specified as a condition. The double arrow refers to
a bidirectional relationship and the acronym RWA stands for
rotating wave approximation.

PHYSICAL REVIEW LETTERS 129, 100601 (2022)

100601-4



and ζ ¼ ζðq; p; tÞ, where p is the conjugate momentum,
and it maps to our approach with ζ ¼ ðeLS − IÞq (the
change of sign in S is simply a change from the active
representation used so far to the passive representation used
in KB).
Besides the EOM methods, we also include the most

common quantum Hamiltonian methods in the genealogy
of Fig. 3. They are characterized by the utilization of
Floquet theorem [48], which guarantees the existence of a
unitary transformation rendering the Kamiltonian time
independent. They map naturally to the exponential rep-
resentation discussed in this Letter. We find that using the
freedom in the integration constant of Eq. (8b), as specified
in Fig. 3, we recover the so-called Floquet-Magnus
expansion ½Sðt0Þ ¼ 0� [25] or the Van Vleck expansion
(S̄ ¼ 0) [21,27,29]. This gives formal ground to the
observations made in Refs. [22,28] on the connection
between these two methods.
Note that, with the exception of the Floquet-Magnus

expansion, all the aforementioned methods were limited to
the lowest orders. Instead, our symbolic formula can be
readily used to carry out the calculation to arbitrary order
with computer algebra software [49,50]. We illustrate this
by taking as an example the widely employed Van Vleck
expansion. We have explicitly written a symbolic algebra
algorithm, made available in Ref. [51], and used it to
explicitly display the expansion up to order five, automat-
edly (see Sec. D of the Supplemental Material [39]). To the
best of our knowledge, the expansion could only be found
to order three in the literature [28] until this Letter.
In summary, we have developed a perturbation method

to efficiently treat rapidly driven nonlinear systems. It
yields a double coupled recursive formula well suited for
automated symbolic computation to arbitrary order. We
achieve this result by constructing a canonical transforma-
tion that explicitly decouples the relevant dynamics, gove-
rned by a time-independent effective Hamiltonian, from the
complicated micromotion. Our treatment is completely
agnostic to the classical or quantum nature of the problem
and sheds light on the long-standing discussion of the
relationship between well-known perturbation methods
developed independently of each other. We note that an
application of the structural correspondence to out-of-
equilibrium driven systems had been suggested by
Ref. [16] but was not carried out until this Letter. We
further remark that our formula can be generalized to treat
Hamiltonians of arbitrary order in the perturbation para-
meter. This is particularly powerful when treating para-
metric processes in driven nonlinear bosonic oscillators
[52], and is thus relevant to Hamiltonian engineering in
superconducting quantum circuits [19,53–55]. Finally, we
note that there is a strong relationship between time-
periodic (Floquet) and space-periodic (Bloch) systems,
and thus, our recursive formula can be adapted to compute
in this context the Schrieffer-Wolff transformation [56] to

arbitrary order and potentially get new results in quantum
many-body problems.
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