
Comment on “Universal Gas Adsorption Mechanism
for Flat Nanobubble Morphologies”

In a recent Letter, Petsev, Leal, and Shell (PLS) [1]
intriguingly attribute the low contact angles of surface
nanobubbles to adsorption of gas molecules to liquid-
immersed surfaces. Although the flattening effect might
plausibly occur on highly adsorbing commercial gas
capture materials, we show in this Comment that the
proposed effect is negligible in systems encountered
experimentally and, thus, cannot be the “universal” reason
for small contact angles.
The Letter uses an adsorption constant range 10−6 <

KA
eq < 10−4 Pa−1 that originates from literature values of

metal organic frameworks (MOFs) and carbon molecular
sieves (CMSes)—functional materials renowned for their
gas capture capabilities [2]. Its conclusion that adsorptive
flattening is universal to all experiments assumes that the
lower bound KA

eq ∼ 10−6 Pa−1 is easily exceeded by con-
ventional or experimentally encountered materials like
HOPG [3].
The adsorption strength of a material is typically

quantified by adsorption enthalpy ΔH rather than KA
eq

(the latter is model dependent [4]). PLS’s indicative range
relies on CO2 adsorption to two landmark sites in Mg-
MOF-74, with KA

eq ¼ 2.49 × 10−4 and 1.28 × 10−6 Pa−1,
or ΔH ¼ 42 and 24 kJ=mol [5]. In contrast, computational
[6,7] and experimental [8,9] investigations of N2-HOPG
find ΔH ¼ 2–10 kJ=mol. In the single-site Langmuir
adsorption model used in the Letter [4],

KA
eq ¼ VbeΔH=kBT=kBT; ð1Þ

where Vb is the binding site volume. Since KA
eq increases

monotonically with ΔH, the KA
eq of N2-HOPG must be

smaller than the model’s lower bound.
To determine the extent of the model’s overestimate, we

estimate the ratio betweenKA
eq for N2-HOPG and CO2-Mg-

MOF-74 by Eq. (1), assuming equal Vb (N2=CO2 have
similar 0.33=0.35 nm diameters). Depending on ΔH pairs
between N2-HOPG (2–10 kJ=mol) and CO2-Mg-MOF-74
(24 or 42 kJ=mol), we find 10−13 < KA

eq < 10−9 Pa−1, i.e.,
3–7 orders below the lower bound. Alternatively, PLS
estimate their lower bound by extrapolating the KA

eq ∼
10−6 Pa−1 of CMSs to HOPG, arguing that the two are
chemically similar. However, two chemically identical
materials yield different KA

eq if one possesses a higher
specific surface area A and, thus, more adsorption sites
n ∝ A3=2 per unit mass. While CMSs are nanoporous
(A ∼ 1000 m2=g [10]), natural graphite has A ¼
0.6–8.9 m2=g [11,12]; for atomically- flat HOPG, A is
even smaller. Since 1=KA

eq defines the pressure at which

half of adsorption sites are occupied [4], neglecting
porosity implies a 3–6 order overestimate of the
N2-HOPG KA

eq.
The model has little margin to accommodate an over-

estimate of the lower bound KA
eq. Reevaluating Eq. (5) of

the Letter [1] for 10−12 < KA
eq < 10−6 Pa−1, we find that

adsorptive flattening is only marginally discernible from
the zero adsorption case (Fig. 1 left, black dashed line) if
KA

eq ∼ 10−7 (Fig. 1, orange curve), an order below the
10−6 Pa−1 “weak adsorption” limit (Fig. 1, blue curve).
The effect is negligible—i.e., not discernible by atomic
force microscopy—should the true KA

eq be 2 orders or more
below the weak limit (Fig. 1, right).
Finally, we note that there are several other viable

mechanisms [3,13]—ambient gas supersaturation in the
liquid, line tension, and sensitivity of AFM imaging forces
to bubble size—that can lead to unexpectedly small contact
angles, without assuming unreasonably strong gas-sub-
strate interactions. Our observations are relevant to recent
reports attributing other unusual properties of surface
nanobubbles to adsorption, particularly those relying on
the authors’ choice of adsorption constants [14].
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FIG. 1. Left: predicted nanobubble heights h for 10−12 <
KA

eq < 10−6 Pa−1 (legend on right); the zero adsorption case is
in the black dashed line. Following Fig. 2 and Eq. (5) of the Letter
[1], we assume θe ¼ 70° and γ ¼ 73 mN=m. Right: contact angle
reduction relative to zero adsorption case; indicative error of an
atomic force microscope Δθ ∼ 0.2° is marked in the dashed line.
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