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We propose a concept of noncollinear spin current, whose spin polarization varies in space even in
nonmagnetic crystals. While it is commonly assumed that the spin polarization of the spin Hall current is
uniform, asymmetric local crystal potential generally allows the spin polarization to be noncollinear in
space. Based on microscopic considerations, we demonstrate that such noncollinear spin Hall currents can
be observed, for example, in layered Kagome Mn3X (X ¼ Ge, Sn) compounds. Moreover, by referring to
atomistic spin dynamics simulations we show that noncollinear spin currents can be used to switch the
chiral spin texture of Mn3X in a deterministic way even in the absence of an external magnetic field. Our
theoretical prediction can be readily tested in experiments, which will open a novel route toward electric
control of complex spin structures in noncollinear antiferromagnets.
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Recent studies have shown that antiferromagnets
(AFMs) can take the role of ferromagnets in spintronics
[1,2] for their promising features such as the high frequency
nature of eigenmodes, which offers a unique opportunity
to study ultrafast dynamics at terahertz frequencies [3–5].
Furthermore, the resilience to an external magnetic field
and absence of stray fields make AFMs advantageous for
increasing the memory density. However, these properties
make manipulating magnetic order in AFMs extremely
difficult. One of the major breakthroughs to an era of
antiferromagnetic spintronics was a realization that mag-
netic moments in an AFM can be electrically controlled at
an atomic scale due to “locally” asymmetric environment
within each sublattice, even when the global inversion
symmetry is present [6–8]. While early studies have
focused on collinear AFMs such as CuMnAs [7] and
Mn2Au [9–11], in recent years, frustrated noncollinear
(NC) AFMs such as Mn3X (X ¼ Sn, Ge) and Mn3Ir
attracted a great deal of attention. Despite a vanishingly
small net magnetic moment, they exhibit pronounced
anomalous Hall effect [12–15], anomalous Nernst effect
[16,17], and magneto-optical Kerr effect [18], which is in
clear contrast to a common wisdom of conventional
ferromagnets. These effects are driven by momentum-space
Berry curvature originating from the chiral spin texture in
real space [12,19]. In particular, Mn3Sn is identified as a
magnetic Weyl semimetal [19], which exhibits magneto-
transport phenomena of topological origin, e.g., chiral
anomaly [20,21]. Here, change of the magnetic structure
subsequently affects topology of the band structure, which
provides an exciting platform to study an interplay of chiral
magnetic texture and electron band topology [22].

However, complexity of magnetic interactions and exci-
tations makes manipulation of the magnetic moments in
NC AFMs even more challenging than in collinear AFMs.
Nonetheless, Tsai et al. succeeded in switching the mag-
netic state in polycrystalline Mn3Sn=Pt heterostructures by
using the spin Hall effect (SHE) of Pt under an external
magnetic field [22]. Meanwhile, Takeuchi et al. investi-
gated epitaxial Mn3Sn=Pt heterostructures and discovered a
coherent rotation of the chiral spin texture in the Kagome
plane [23], as predicted by Refs. [24,25]. However, we note
that Refs. [22,23] used a conventional spin Hall current
to induce magnetic excitations in Mn3Sn, which to
some extent is analogous to a situation in heavy metal-
ferromagnet bilayers.
A unique feature of AFMs is the sublattice degree of

freedom, which allows for multiple modes of excitations.
Keeping this in mind, we explore the possibility of a
sublattice-dependent generation of spin Hall currents and
investigate how they affect the dynamics of the magnetic
texture in NC AFMs. While it is well-known that the spin
polarization of the spin Hall current is orthogonal to both an
external electric field and current propagation direction in
cubic crystals without a sublattice degree of freedom [26]
[Fig. 1(a)], we find by symmetry arguments that the spin
polarization of the spin Hall current can be NC in space
already at the level of a nonmagnetic crystal [Fig. 1(b)]. We
demonstrate that such NC spin current can be generated in
Mn3X compounds, and it exhibits a “chiral” component,
which can be used to ignite a sublattice-dependent mag-
netization dynamics resulting in a switching of the mag-
netic texture. We believe that exploring the physics of
sublattice-dependent NC spin currents would enrich our
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understanding of dynamics and excitations in various
magnetic materials, and might provide a new way of
efficient electric control of magnetic order.
First, we generalize the concept of a spin current to

describe “local” components in the vicinity of individual
atoms, whose polarization may differ depending on the
sublattice. The local spin current on site i can be defined
from the “global” spin current Q ¼ v ⊗ S by Qi ¼
ðQPi þ PiQÞ=2, where v is the velocity operator, S is
the spin operator, and Pi is the projection operator on site i,
such that Q ¼ P

i Qi [27]. Given an external electric field
E, the local spin Hall conductivity (SHC) tensor on site i,

σ
Sγ
αβ;i is defined by Qαβ;i ¼ σ

Sβ
αγ;iEγ, where α, β, γ stand for

Cartesian components of the velocity, spin, and external
electric field, respectively. The global SHC is recovered
by summing the local SHC over the site index i:

σ
Sβ
αγ ¼

P
i σ

Sβ
αγ;i. We define the NC spin current as the local

spin current whose spin polarization varies depending on
atomic site i.
A unique direction of the spin polarization for the global

spin current in the SHE is set by a mirror plane containing
both an external electric field and electron’s propagation
path. This explains why an external electric field, electron’s
propagation, and the spin polarization are orthogonal to
each other in cubic crystals. In Mn3X, the mirror planeMyz

[indicated by a green line in Fig. 2(a)] allows only for Sx
polarization of the global spin Hall current flowing along z
when an external electric field is applied along y. Because
Myz transforms Qzx → Qzx, Qzy → −Qzy, and Qzz →

−Qzz while Ey remains invariant, σ
Sy
zy and σSzzy are not

allowed.
In Mn3X, however, not all sublattice atoms are located

on top ofMyz [Fig. 2(a)], which implies that the local spin
Hall current can generally have NC polarization depending
on the sublattice. Let us consider again a situation where an
external electric field is applied along y and the spin Hall
current is flowing along z, and analyze the structure of the

local SHC tensor, σ
Sβ
zy;i. On site A, only Sx polarization is

allowed because the site index A is invariant with respect to
Myz. However, on sites B and C, the spin current can have
Sy polarization, which is a nontrivial direction, as well as Sx
polarization. In general, there is no symmetry element that
enforces them to vanish. Because site indices B and C are
interchanged by Myz, these components are related by

σ
Sy
zy;B ¼ −σSyzy;C and σSxzy;B ¼ σSxzy;C. We remark that the NC

spin current is “hidden” in this case: If the local SHCs are

summed over all sites, only σSxzy survives and σ
Sy
zy vanishes.

However, we remark that breaking of a mirror symmetry
i.e., by a strain, thickness gradient, can induce occupation
asymmetry of the hidden components, leading to an
unconventional spin polarization of the global SHE [28].
Meanwhile, the components of the local SHC on sites A0,
B0,C0 are identical to those on sites A, B, C by the inversion
symmetry. Detailed analysis of the symmetry can be found
in the Supplemental Material [29].
In the following, we discuss only the time-reversal

“even” component of the SHE. This means that the NC
spin current we describe here arises even at the level of
nonmagnetic crystals due to anisotropic crystal potential
in combination with the spin-orbit coupling (SOC). This is
different from the magnetic or time-reversal “odd”
SHE [32–34], which arises from the magnetic texture.

(a) (b)

FIG. 1. Schematic illustration of the (a) conventional versus
(b) NC spin Hall currents. The red arrows represent the direction
of the spin polarization, the blue arrows indicate the electron’s
propagation direction in average, and the gray arrows represent
the direction of an external electric field E.

(a)

(c) (d)

(b)

(e)

FIG. 2. (a) The structure of Mn3X (X ¼ Sn, Ge). Only Mn atom
sites are shown as red spheres. There are 6 Mn atoms in a unit
cell, and Mn atoms A, B, C in one layer are related to Mn atoms
A0, B0, C0 in another layer by the inversion symmetry. On each
site, the magnetic moment of localized d electrons is indicated by
black arrows, and conduction s electrons are depicted by orange
clouds around the atoms. A mirror plane Myz is indicated by a
green line. The chiral directions [Eq. (4)] are represented by blue
arrows. (b) Electronic band structure according to the TB model
of MnX3 compounds. Shown are the local SHCs on (c) A site,
(d) B site, and (e) C site, respectively.
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We emphasize that, generally, the interplay of the local
symmetry and magnetic order leads to a very rich structure
of the NC spin current since the local SHC depends not
only on the site index but also on the direction of local
magnetic moments. We leave an investigation of such
higher-order “magnetic” contributions to the NC spin
current for future work.
For the demonstration of the emergence of NC spin

current in Mn3X, we adopt a tight-binding (TB) model
[29]. As shown in Fig. 2(a), the unit cell contains six atoms
on each Mn site. We assume that only s electrons are
itinerant, and they interact with local magnetic moments of
d electrons on site i (mi) via the sd exchange interaction.
The Hamiltonian for the s electrons is written as

Hel ¼ −t
X
hiji

X
α

c†iαcjα þ Jsd
X
i

X
αβ

c†iαðσαβ · m̂iÞciβ

þ iλ
X
hiji

X
αβ

c†iασαβ · n̂ijcjβ; ð1Þ

where the first, second, and third terms describe intersite
hopping, sd exchange coupling, and SOC. For site indices
i, j, the notation h� � �i in the summation means that only
nearest neighbors are taken into account. Here, ciαðc†iαÞ is
annihilation (creation) operator for the s orbital on site i
with spin α and σαβ is a matrix element of the vector of
Pauli matrices. The parameters are set as follows: t ¼
1.0 eV for the nearest neighbor hopping amplitude, Jsd ¼
1.7 eV for the sd exchange interaction with local moment
m̂i, λ ¼ 0.2 eV for the strength of the SOC. Meanwhile, n̂ij
is a unit vector orthogonal to both the hopping direction
and the local crystal field. We set the direction of the
magnetic moments by m̂A ¼ ŷ, m̂B ¼ ð ffiffiffi

3
p

=2Þx̂ − ð1=2Þŷ,
and m̂C ¼ −ð ffiffiffi

3
p

=2Þx̂ − ð1=2Þŷ.
The electronic band structure of the TB model is shown

in Fig. 2(b), which agrees with the result from the previous
study [35]. We evaluate the intrinsic local SHC from the TB
model for the spin current flowing along zwhen an external
electric field is applied along y. It is given by

σSαzy;i ¼
e
ℏ

X
n

Z
d3k
ð2πÞ3 fnkΩ

Sα
nk;zy;i; ð2Þ

where

ΩSα
nk;zy;i¼2ℏ2

X
m≠n

Im

�hunkjQzα;ijumkihumkjvyjunki
ðEnk−Emkþ iηÞ2

�
ð3Þ

is the atom-projected spin Berry curvature. Here, e > 0 is
the magnitude of the electron’s charge, ℏ is the reduced
Planck constant, unk is periodic part of the Bloch state, and
Enk and fnk are corresponding energy eigenvalue and
Fermi-Dirac distribution, respectively. The calculated local
SHCs on sites A, B, C are shown in Figs. 2(c)–2(e),

respectively, as a function of the Fermi energy EF. As
explained, the local SHC on site A has only Sx component
and the other spin components are absent. On sites B and C,
however, both Sx and Sy are present. This result is
consistent with the symmetry analysis [29].
Considering a combined result of various components of

the local conductivity tensor σSαzy;i, we can define the
“chiral” component of the SHC by

σSchzy ¼
X
i;α

σSαzy;iξα;i; ð4Þ

where ξ̂A ¼ −x̂, ξ̂B ¼ ð1=2Þx̂þ ð ffiffiffi
3

p
=2Þŷ, ξ̂C ¼ ð1=2Þx̂−

ð ffiffiffi
3

p
=2Þŷ, determine the “chiral” directions on each site,

which are indicated by blue arrows in Fig. 2(a). This is the
component that enables coupling to the NC texture of
magnetic moments in Mn3X and inducing a NC spin
torque, which goes beyond the uniform and staggered
torques conventionally discussed in the context of ferro-
magnetic or Néel order switching.
Our calculation of the chiral SHC is shown in Fig. 3(a),

which is compared with a uniform (Sx) component. We
observe that while the uniform component has large values
over a wide range of energy, the chiral component tends to
exhibit a more spiky behavior. This is because it requires a
“chiral”mixing of the spin character that can be achieved at
specific k points in the electronic structure. However, it is
remarkable that the chiral component can be as large as the
uniform component, especially near EF ≈ −2 eV and EF ≈
þ3 eV [highlighted by a blue box in Fig. 2(b)], where
various bands cross each other. To visualize the influence of
band crossings, in Fig. 3(b), we plot the “chiral” spin Berry
curvature near E ≈þ3 eV along Γ − K −M, which is
strongly pronounced near the band crossings.
In a Mn3X film grown along [0001] direction

(perpendicular to the Kagome plane), the chiral component
of the NC spin current induced by an external electric field
leads to a spin accumulation at both surfaces, which exerts
a torque on local moments [29]. This is analogous to the
self-induced torque driven by an intrinsic spin current from
a ferromagnet in heterostructures with broken mirror

(a) (b)

FIG. 3. (a) Comparison of the SHCs for the chiral component
Sch (cyan solid line) and a uniform component Sx (red dashed
line) as a function of the Fermi energy. (b) “Chiral” spin Berry
curvatures near the band crossings, which is indicated by color on
top of the band structure.
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symmetry [36,37]. While the self-induced torque cancels to
zero for a freestanding film, interaction of the Mn3X film
and the substrate will cause an asymmetry between the top
and bottom surfaces, leading to finite self-induced torque in
a “chiral”manner. We propose an idea that the self-induced
torque caused by the NC spin current can be used to switch
the chiral magnetic texture of Mn3X as illustrated in
Fig. 4(a).
In order to demonstrate the switching of the chiral spin

texture, we consider a classical spin model and perform the
atomistic spin dynamics simulations [29,30]. For simplic-
ity, we consider a single layer Kagome plane with three
spins in the unit cell. The Hamiltonian for the spin system is
given by

Hmag ¼ J
X
hiji

m̂i · m̂j −
K
2

X
i

ðK̂i · m̂iÞ2

þD
X
hiji

n̂ij · ðm̂i × m̂jÞ; ð5Þ

where m̂i is the direction of the magnetic moment of the d
electrons at site i, J > 0 is the strength of the exchange
interaction (antiferromagnetic), K > 0 is the strength of the
in-plane anisotropy whose direction depends on the
sublattice such that K̂A ¼ x̂, K̂B ¼ −ð1=2Þx̂ − ð ffiffiffi

3
p

=2Þŷ,
K̂C ¼ −ð1=2Þx̂þ ð ffiffiffi

3
p

=2Þŷ, and D is the strength of the
Dyzaloshinskii-Moriya interaction. The definition of n̂ij is
identical to that in Eq. (1). Based on Eq. (5), we solve a
stochastic Landau-Lifshitz-Gilbert equation by applying a
chiral torque of the form τchirali ¼ ðτ0jγj=μBÞm̂i × ðξ̂i × m̂iÞ,
where τ0 is the magnitude of the torque, γ is the

gyromagnetic ratio, μB is the Bohr magneton, and ξ̂i’s
are the chiral directions defined in Eq. (4) and indicated by
blue arrows in Fig. 4(a). This torque enables switching of
the chiral magnetic texture via a soft mode that coherently
rotates the magnetic moments in the Kagome plane [38,39].
For magnetic interaction parameters, we choose J ¼ 10,
K ¼ 0.1, D ¼ 0.7 in units of meV. The Gilbert damping
constant and the temperature are set α ¼ 0.001 and
T ¼ 10 K, respectively. The magnitude of the local
moment on each site is assumed to be m0 ¼ 3μB.
For the analysis, we define an order parameter of

Mn3X by

O ¼ 1

3
ðm̂A þ Rm̂B þ R2m̂CÞ; ð6Þ

where R is an anticlockwise rotation by 2π=3 around the z
axis [40]. For the ground state configurations shown in
Fig. 4(a), for example, O ¼ m̂A when T ¼ 0. We remark
thatO is often referred to as the octupole magnetic moment
in the literature [18,22,41,42]. In Fig. 4(b), we show the
evolution of O averaged over the 10 × 10 supercell. The
torque is applied from t ¼ 400 ps until t ¼ 600 ps (marked
by gray color shade). A plot for Ox (blue line) clearly
shows that the chiral magnetic texture is switched by the
torque within ∼100 ps interval. Meanwhile we observe
fluctuation of the other components. Overall, Oy exhibits
stronger fluctuation than Oz, which is attributed to the in-
plane anisotropy of the system. It is interesting to notice
that the fluctuation becomes enhanced during the switching
(t ≈ 450 ps). Evaluation of the energy in each time step by
Eq. (5) is shown in Fig. 4(c). It reveals the activation energy
required for the switching is ΔE ≈ 8 meV per unit cell.
While the overall background fluctuation ofΔE ≈ 2.5 meV
is due to thermal effect, the energy fluctuations becomes
suppressed when the torque is still applied after the
switching at t ≈ 500 ps.
As we have demonstrated, the torque exerted by the NC

spin current can result in the field-free switching of the
chiral magnetic texture in Mn3X as the degeneracy of the
two spin configurations in Fig. 4(a) is lifted. In contrast,
the collinear spin current does not lift the degeneracy,
which results in continuous precession if there is no
external magnetic field [23]. Thus, for the collinear spin
current, switching the magnetic texture of NC AFMs
requires an external magnetic field to break the symmetry
[22]. Therefore, the NC spin current is essential to achieve
a deterministic switching of NC magnetic textures in AFMs
without an external magnetic field. Moreover, the NC spin
current is expected to be more efficient than the collinear
spin current for switching because the geometry of the spin
injection on each sublattice is optimal.
In conclusion, we propose a concept of the NC spin

current that can be excited by the SHE in crystals with
low local symmetry such as Mn3X. As it arises from the

(a)

(b) (c)

chirality
switching

FIG. 4. (a) Chirality switching induced by the NC spin current,
where black arrows represent local moments of Mn atoms in
Mn3X. An external electric field E is indicated by a green arrow.
Time evolution of (b) the average octupole moments and
(c) energy per unit cell obtained from atomistic spin dynamics
simulation. The chiral self-induced torque is applied during
t ¼ 400–600 ps.
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sublattice-dependent crystal potential, we expect that the
NC spin current can be found in many other materials,
where the crystal potentially is locally asymmetric, e.g.,
altermagnets [43]. A major consequence of the NC spin
current results from its coupling with the chiral magnetic
texture in NC AFMs. For example, in a thin film of Mn3X
grown on a substrate, the NC spin current may result in a
self-induced torque at the interface and switch the chirality
of the magnetic texture. This opens a novel route toward
electric control of NC AFMs that can be applied, for
example, for a memory device that stores information in the
magnetic configuration in a NC AFM that can be controlled
by the NC spin current. Moreover, the NC spin current can
be used to excite magnon modes in AFMs that do not
couple to collinear spin currents [38]. As such, our finding
is an important manifestation of a sublattice-dependent
electronic excitations and its coupling to a magnetic
texture, which is “hidden” in the description of global
spin current, and it is expected to play a crucial role in
understanding complex nature of spin excitations in chiral
magnets.
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