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We consider nonlinear ballistic spin transport in the XXZ spin chain and derive an analytical result for
the nonlinear Drude weight Dð3Þ at infinite temperatures. In contrast to the linear Drude weight Dð1Þ, we
find that the result not only depends on anisotropy but also on the string length of the quasiparticles
transporting the spin current. Our result provides further insights into transport by quasiparticles and raises
questions about Luttinger liquid universality.
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Introduction.—Transport in metals is usually well
described by a Boltzmann equation for long-lived quasi-
particles [1,2]. Standard transport theory, though, cannot
necessarily be expected to hold for one-dimensional quan-
tum systems. Here, Fermi liquid theory breaks down and
the low-energy properties are instead described by
Luttinger liquid theory, which is based on collective
excitations rather than quasiparticles [3]. For such systems,
transport in the linear response regime can be studied using
standard many-body techniques based on the Kubo for-
mulas [4]. For a clean one-dimensional metal at zero
temperature, one finds that the dc conductivity has a
zero-frequency Drude peak D whose weight is determined
entirely by the velocity of the collective excitations v and
the Luttinger parameter K [5,6].
At finite temperatures, currents are always able to relax

even in a clean one-dimensional lattice system as long as at
least two noncommuting Umklapp scattering processes are
present [7]. This typically leads to diffusive transport [8–10].
An exception is one-dimensional integrable models that
have an extensive number of local conservation laws which
can protect a current from decaying completely [10–14].
Integrable models are not just a mathematical oddity: close
realizations have also attracted considerable experimental
attention [15–21]. In particular, good realizations of the
spin-1=2 Heisenberg chain—which can also be viewed as a
system of interacting spinless fermions—have recently been
achieved in cold atomic gases and dynamical and transport
properties have been studied extensively [22–26].
Gapless integrable quantum systems show an interesting

duality: Thermodynamic quantities at low energies and
zero temperature transport properties can be calculated
essentially exactly within the Luttinger liquid framework if
integrability is understood as a fine-tuning of the param-
eters in the field theory fixing the velocity of the collective
excitations, the Luttinger parameter, and the amplitudes
of irrelevant operators [14,27–29]. At the same time,
thermodynamic quantities can also be calculated using

the thermodynamic Bethe ansatz (TBA), which deals with
particles and their bound states. Thus, both a picture of
collective excitations and of quasiparticles seems to be
equally valid.
For the finite temperature transport properties of the

anisotropic spin-1=2 Heisenberg (XXZ) chain, however,
this no longer seems to be the case. It was recently
demonstrated using the TBA formalism that the Drude
weight of this model is fractal as a function of anisotropy
not only at infinite [30,31] but also at low temperatures
[32], while the Drude weight is continuous and Luttinger
liquid theory does hold at zero temperature [8,9,14].
A similar fractal structure has also been obtained for the
return probability following a quench from a domain-wall
state [33]. More generally, it has been argued that the
nonequilibrium properties of integrable models can be
understood using a Bethe-Boltzmann equation that
includes densities for all conserved charges leading to a
generalized hydrodynamical (GHD) description [34–39].
However, while the Drude weight is fractal for all finite
temperatures, it strangely does not reveal the full particle
content of the model: the quantum numbers of the type of
magnon bound state carrying the current for a given
anisotropy do not directly enter.
In this Letter, we will extend the study of finite-temper-

ature transport in the anisotropic spin-1=2Heisenberg chain
to the nonlinear response regime. We will, in particular,
study the most singular part of the nonlinear response
obtained when all relevant frequencies in a generalized
conductivity are sent to zero, leading to the recently
introduced notion of nonlinear Drude weights [40,41].
These weights can be understood as a straightforward
generalization of the Kohn formula [42,43], relating the
Drude weights to changes in the individual energy levels
when a magnetic flux ϕ pierces a ring. Our main result is
an exact formula for the nonlinear Drude weight Dð3Þ at
infinite temperatures, demonstrating that in this response
function the full particle content of the model is revealed.
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Nonlinear Drude weights.—It has been shown by Kohn
[42] that the Drude weight at zero temperature can be
understood as the response of the ground state energy to a
magnetic flux through a ring. Alternatively, this can also be
understood as the response to a twist in the boundary
conditions. Later, this result was generalized to finite
temperatures [43]. In general, we can express all Drude
weights as

DðlÞ ¼ Nl

Z

X
i

e−βEi
∂
lþ1Ei

∂ϕlþ1

����
ϕ¼0

: ð1Þ

Here, Z is the partition function, N the number of sites, Ei
the energy levels, and β ¼ 1=T the inverse temperature.
The linear Drude weight Dð1Þ is given by the curvature of
the energy levels, while nonlinear Drude weights (l > 1)
correspond to higher order derivatives. Note that because of
the ϕ → −ϕ symmetry of the response, all Drude weights
with l even will vanish. The linear Drude weight can be
obtained as Dð1Þ ¼ limt→∞limN→∞ð1=2NTÞhJðtÞJð0Þi,
where JðtÞ is the current operator at time t and h� � �i
denotes the thermal average [9,10]. It thus describes the
nondecaying, ballistic part of the current. In a similar way,
the nonlinear Drude weights can be understood as being
given by more complicated multipoint current correlation
functions [41].
A simplification of the generalizedKohn formula, Eq. (1),

is obtained by noting that a one-dimensional systemdoes not
support a persistent current at zero flux in the thermo-
dynamic limit. Therefore, limN→∞ ∂

lf=∂ϕljϕ¼0 ¼ 0wheref
is the free energy density. This relation can be used to
expressDðlÞ by flux derivatives of order l and lower only. A
straightforward calculation shows, in particular, that

Dð3Þ ¼N3

Z

X
i

e−βEi
∂
4Ei

∂ϕ4

����
ϕ¼0

¼N3β

Z

X
i

e−βEifβ2 _E4
i −6β _E2

i Ëiþ3Ë2
i þ4 _EiE

…

ig; ð2Þ

where the dots denote flux derivatives. This formula is also
useful for numerical evaluations; see the Supplemental
Material [44].
Model and noninteracting limit.—In the following, we

will calculate Dð3Þ for the spin-1=2 XXZ chain,

H ¼ 1

4

XN
j¼1

ðe−iϕNσþj σ−jþ1 þ ei
ϕ
Nσ−j σ

þ
jþ1 þ Δσzjσ

z
jþ1Þ; ð3Þ

for anisotropies in the critical regime, jΔj ¼ j cosðγÞj < 1,
with γ ¼ nπ=m, and n;m ∈ Z. The model can be mapped
to spinless fermions by a Jordan-Wigner transform with Δ
then describing the strength of a nearest-neighbor inter-
action. For Δ ¼ 0, the model is equivalent to free spinless

fermions. Like the linear Drude weight Dð1Þ [5], the
nonlinear Drude weights for the XXZ chain also exhibit
a smooth dependence on the anisotropy at T ¼ 0 [46];
however, the nonlinear Drude weights DðlÞ, l > 1, diverge
if γ < ððl − 1Þ=ðlþ 3ÞÞπ, the cause being nonanalytic flux
corrections, which stem from Umklapp scattering.
The T > 0 linear Drude weight for the XXZ chain was

first calculated in Ref. [11]. Here, it was noted that it has the
same structure as in the noninteracting case once the
noninteracting particles are replaced by the appropriately
dressed quasiparticles and their distribution functions. Such
an equivalence was also later found for heat transport [12].
The same quasiparticle structure is also underlying the
GHD approach that has been successfully applied to
integrable systems in the linear response regime and
beyond [34–36,38,47]. In particular, the analytical expres-
sion for the infinite temperature linear Drude weight first
derived in Refs. [30,31,48,49] based on a set of quasilocal
conserved charges has been reproduced in GHD [50] and
also directly from the TBA equations [51]. An extension to
the GHD framework was proposed in [52] for numerically
calculating nonlinear conductivities, which was then
applied to the case of Δ > 1. At the moment there are,
however, no nonzero temperature results for the nonlinear
Drude weights in the critical regime of the XXZ spin chain.
Let us first calculate Dð3Þ in the noninteracting

case, Δ ¼ 0. In this case, the free energy density is
given by f ¼ −N−1T

P
k ln½1þ expð−βεkÞ� with dis-

persion εk ¼ − cosðkþ ϕ=NÞ. It is now straightforward
to take derivatives with respect to the flux ϕ. Using again
that ∂4f=∂ϕ4 ¼ 0 in the thermodynamic limit, we arrive at
the following expression for the nonlinear Drude weight:

Dð3Þ ¼ N3
X
k

nkε
ð4Þ
k

¼ N3β
X
k

nkn̄kf3̈ε2k þ 4_εk ε
…

k þ 6βð2nk − 1Þ_ε2k ̈εk

þ β2ð1 − 6nkn̄kÞ_ε4kg: ð4Þ

Here, nk ¼ 1=ðexpðβεkÞ þ 1Þ is the Dirac distribution and
n̄k ¼ 1 − nk. Equation (4) can be evaluated numerically for
all finite temperatures and in closed form at zero and
infinite temperatures; see the Supplemental Material [44].
The interacting case.—From the Bethe ansatz equations,

the quasiparticle momenta and phase shifts for the XXZ
model can be obtained. Both can be characterized by so-
called rapidities that arrange themselves, according to the
string hypothesis, in regular patterns in the complex plane
[53]. These strings describe bound states of magnons.
Using the string hypothesis leads to the TBA equations that
determine the Fermi weights ϑα and dressed energies ε̃α of
the quasiparticles. Remarkably, as we will see below, by
simply replacing bare by dressed quantities in Eq. (4),
Dð3Þ in the interacting case is immediately obtained.

PHYSICAL REVIEW LETTERS 129, 096602 (2022)

096602-2



A mathematically more rigorous proof is provided in the
Supplemental Material [44].
The flux ϕ enters the Hamiltonian, Eq. (3), in the usual

Peierls construction as a phase factor ∼ expð�iϕ=NÞ. It is
equivalent to a twist in the boundary conditions for the
wave function Ψðlþ NÞ ¼ eiϕΨðlÞ. As such, it will not
affect the properties of the system in the thermodynamic
limit. We therefore need to calculate the finite-size correc-
tions to the energy eigenvalues. Here, we follow the
approach in Refs. [11,54] for the linear Drude weight.
The rapidities θα, which determine the quasimomenta kα,

fulfill the Bethe ansatz equations

�
sinh γ

2
ðθα þ iÞ

sinh γ
2
ðθα − iÞ

�
N

¼ −eiϕ
YM
α0¼1

sinh γ
2
ðθα − θα0 þ 2iÞ

sinh γ
2
ðθα − θα0 − 2iÞ ð5Þ

for α ¼ 1;…;M, where M is the number of spins down.
The rapidities arrange themselves in regular patterns
(strings) in the complex plane with the type of allowed
strings α determined by the anisotropy Δ ¼ cos γ. For a
finite system of length N, we can now for each string type
expand the rapidities θα around the thermodynamic limit,
resulting in

θNα ¼ θ∞α þ g1α
ϕ

N
þ g2α

�
ϕ

N

�
2

þ g3α

�
ϕ

N

�
3

þ � � � : ð6Þ

In the thermodynamic limit, we can obtain the densities of
the θα in terms of string densities ρα and hole densities ρhα,
which can be combined into total densities ρTα ¼ ρα þ ρhα
fulfilling the standard TBA integral equation

ρTαðθÞ ¼
k0αðθÞ
2π

þ
X
β

Z
dλKαβðθ − λÞρβðλÞ; ð7Þ

where Kαβðθ − λÞ denotes the TBA kernel; see the
Supplemental Material [44] for details.
From here, we can determine the finite size corrections

gjα in Eq. (6). In an expansion to leading order in inverse
temperature β we find, in particular,

ρTαg1α ¼
q̃α
2π

¼ m
4π

ðδα;m þ δα;m−1Þ;

gnα ¼
1

n
g1α∂θgðn−1Þα for n > 1; ð8Þ

with the dressed energy given by ε̃α ¼ ð2π sin γ=γÞσαρTα
and q̃α denoting the dressed spin. Furthermore, σα ¼ �1 is
a sign that depends on the type of string. We note that
Eq. (8) reveals a very simple structure of the g functions at
infinite temperature: they are given by taking recursively
higher derivatives of the inverse of the dressed energy.
A dressed function f̃α is related to its bare quantity by the
TBA integral relation

f̃αðθÞ −
X
β

Z
dλKαβðθ − λÞϑβðλÞf̃βðλÞ ¼ fαðθÞ: ð9Þ

The Fermi weights ϑα are given by ϑα ¼ ð1þ ηαÞ−1 with
ηα ¼ ρhα=ρα. The infinite temperature case is particularly
simple because dressed derivatives of the energy can
directly be replaced by derivatives of the dressed energy
ε̃αðθÞ. The derivatives of the latter with respect to the flux ϕ
can straightforwardly be expressed by the finite-size
corrections gjα using Eq. (6). We find, in particular,

∂ε̃

∂ϕ

����
ϕ¼0

¼ ∂θε̃
g1
N
;

∂
2ε̃

∂ϕ2

����
ϕ¼0

¼ 2∂θε̃
g2
N2

þ ∂
2
θε̃

g21
N2

∂
3ε̃

∂ϕ3

����
ϕ¼0

¼ 6∂θε̃
g3
N3

þ 6∂2θε̃
g1g2
N3

þ ∂
3
θε̃

g31
N3

: ð10Þ

Note that we have suppressed the subscript α for the string
type. We are now in a position to express the Drude weight
Dð3Þ in Eq. (4) by the dressed energies and their distribution
functions. To do so, we replace ð1=NÞPk →

P
α

R
dθρT ,

nk → ϑα, and ∂ϕεk → ∂ϕε̃.
High-temperature asymptotics.—This then leads us to

the following result for the high-temperature asymptotics
with the index α suppressed and the gjα functions given by
Eq. (8):

Dð3Þ ≈ β
X
α

Z
dθρTϑð1 − ϑÞfð∂θε̃Þ2ð12g22 þ 24g1g3Þ

þ 36ð∂θε̃Þð∂2θε̃Þg21g2 þ ½3ð∂2θε̃Þ2 þ 4ð∂θε̃Þð∂3θε̃Þ�g41g:
ð11Þ

Note that gjα ∼ ðq̃αÞj with the dressed spin given by
q̃α ¼ ðm=2Þðδα;m þ δα;m−1Þ. Therefore, only the last and
second last strings will contribute to the sum over α in
Eq. (11) and both can be shown to give the same
contribution [48,55]. Equation (11) is one of our main
results and can be evaluated numerically using standard
TBA equations for ηα and ε̃α ¼ ∂β ln ηα. In order to carry
out the explicit high-temperature asymptotic calculation,
the underlying T and Y systems [56] for the XXZ chain are
used to determine the last Fermi weight. The setup for this
analysis is carried out in more detail in [32,51] for the high-
and low-temperature asymptotics, respectively, and more
details are given in the Supplemental Material [44]. Here,
we want to demonstrate the method by first concentrating
on the simple roots of unity case, Δ ¼ cos γ ¼ cosðπ=mÞ.
In this case, it is straightforward to show that for the last
string ηα ¼ ρhα=ρα ¼ m − 1 for β → 0. For the Fermi
weights it follows that ϑαð1 − ϑαÞ ¼ ηα=ð1þ ηαÞ2 ¼
ðm − 1Þ=m2. To obtain the dressed energy ε̃α ¼ ∂β ln ηα
to leading order, the first correction linear in β to the ηα
function is needed. One finds for α ¼ m − 1
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ε̃α ¼
m

4ðm − 1Þ
sin2 γ

cosh γ
2
ðθα þ iÞ cosh γ

2
ðθα − iÞ : ð12Þ

Note that the prefactor m=ðm − 1Þ ¼ ½mϑαð1 − ϑαÞ�−1, i.e.,
each factor of ε̃α brings in an inverse power of the
distribution functions. We will see below that this explains
why the particle content is hidden in the linear Drude
weight while it is fully visible in the nonlinear Drude
weights. Finally, we note that the total density ρTα ¼ ρα þ
ρhα can also be expressed by the dressed energy resulting in
ρTα ¼ σαðγ=2π sin γÞε̃α. It is now straightforward to use the
high-temperature g functions, Eq. (8), to express the non-
linear Drude weight, Eq. (11), in terms of the Fermi weights
ϑα and dressed energies ε̃α. The integral over the rapidities
θ is then a convergent integral over hyperbolic functions
that can be evaluated in closed form. The final result can be
expressed as

TDðlÞ ¼ ð−1Þl−12 m2l−2

8
fϑð1 − ϑÞgl−1

×
sin2ðγÞ
sin2ðπmÞ

�
1 −

ð3l − 2Þm
2π

sin

�
2π

m

��
; ð13Þ

with l ¼ 3 and we have suppressed the string index, which
corresponds to either the last or second last string. In the
Supplemental Material [44], we explicitly show that the
result above is valid for all anisotropies γ ¼ nπ=m with
γ > π=3. It is remarkable that the analytical expression for
Dð3Þ is quite similar to the one for the linear Drude weight
Dð1Þ [31], which is obtained from Eq. (13) by setting l ¼ 1.
A couple of comments are in order: (i) In addition to the

corrections ðϕ=NÞj with j integer in Eq. (6) there will also
be corrections with noninteger powers. It is well known
that the leading irrelevant operator for the XXZ chain
stems from Umklapp scattering and has scaling dimension
2π=ðπ − γÞ. Umklapp scattering leads to a ðϕ=NÞ4π=ðπ−γÞ−3
correction to the energies. To calculate the Drude weight
DðlÞ, we need an lth derivative with respect to the flux; see
Eq. (2). Therefore, the expansion, Eq. (6), is no longer valid
if γ=π < ðl − 1Þ=ðlþ 3Þ [57]. While our main result,
Eq. (13), remains finite in the entire critical regime
jΔj < 1, it is therefore only valid for −1 < Δ < 1=2.
(ii) While the result for Dð3Þ in Eq. (13) looks strikingly
similar to the result for the linear Drude weight, there is a
very important difference: while Dð3Þ does explicitly
contain the Fermi weight ϑ, Dð1Þ does not. Since ϑ ∼
μ̄=m [44], where μ̄ is the length of the last string, Dð3Þ
reflects the full bound-state particle content. For example,
for n ¼ m − 3 the string length can take the two values
μ̄ ¼ ðm� 1Þ=3. Dð3Þ is therefore even “more fractal” than
Dð1Þ. This statement can be made more precise: Let us
consider approaching irrational anisotropies by sending
n;m → ∞ with n=m fixed. We find Dð1Þ ∼ ðβ=12Þsin2γ,

i.e., there is a continuous lower envelope function. On the
other hand, Dð3Þ ∼ ð3β=4Þ½ðmμ̄ðm − μ̄Þ sin γ=πÞ�2, which
means that the nonlinear Drude weight is always diverging
when approaching an irrational anisotropy value. When
integrability is weakly broken, leading to a broadening of
the δ functions in frequency, we might therefore expect a
finite diffusion constant proportional to the envelope
function in linear response while the nonlinear low-
frequency response is expected to be very large or even
divergent.
From a phenomenological perspective, we expect that if

there are stable quasiparticles that contribute to the trans-
port, then their properties should enter the Drude weights
explicitly. It is therefore surprising—an issue that does not
seem to have been addressed explicitly so far—that the
linear Drude weight Dð1Þ does not depend on the string
length μ̄ but rather only on n, m, which determine
the anisotropy Δ ¼ cosðnπ=mÞ. Looking at the Drude
weights DðlÞ more generally we see that Dð1Þ ∼

R
dθϑð1 −

ϑÞð∂θε̃Þ2=ε̃ is an exceptional case. The dressed energy
contains a factor ε̃ ∼ ½ϑð1 − ϑÞ�−1 so that the dependence on
the Fermi weight ϑ ∼ μ̄=m and thus the dependence on the
string length μ̄ exactly cancels out in this case. More
generally, we expect that the scaling with l in the first line
of Eq. (13) also holds for l > 3 because it is a direct
consequence of the scaling of the dressed spin and dressed
energy. It will be interesting to see if the structure in the
second line also holds for l > 3. We note that Eq. (13) for
all odd l does give the correct result TDðlÞ ¼ ð−1Þðl−1Þ=2=8
for Δ ¼ 0.
Dð3Þ as a function of anisotropy and string length is

shown in Fig. 1. The numerical results based on Eq. (11)
and standard TBA equations for ηα are consistent with the
analytical formula, Eq. (13), at β → 0. Note also that for the

FIG. 1. The nonlinear Drude weight TDð3Þ scaled by m4 to fit
on a single scale. The lines are a guide for the eye with the note
that Eq. (13) is only valid at rational points marked by an empty
circle. Crosses are the result of numerically solving the nonlinear
Drude weight formula, Eq. (11), at β ¼ 10−4.
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case n ¼ m − 3 there are two curves for the two different
possible string lengths, clearly demonstrating that the
current is transported by quasiparticles, the Bethe bound
states.
Conclusions.—We have shown that the nonlinear trans-

port properties of the XXZ chain are directly determined by
the particle content of the theory by deriving an analytical
result for the nonlinear Drude weight Dð3Þ at infinite
temperatures. Dð3Þ exhibits a nowhere continuous depend-
ence on the anisotropy Δ ¼ cosðnπ=mÞ just like the linear
Drude weight Dð1Þ. However, in contrast to Dð1Þ it also
explicitly depends on the Bethe string length μ̄ and thus
shows the full particle content of the theory. Our results
shed further light on transport in metals, which is typically
understood using Boltzmann theory for long-lived quasi-
particles. However, the validity of such an approach is
usually difficult to examine except for free models. Here,
integrable models can provide important benchmarks
because their excitation spectra can contain complicated
quasiparticles such as bound states that are exact, i.e., have
infinite lifetime. Our results also shed further light on the
dynamics of integrable systems by showing that Bethe
strings are not merely a tool for calculations but appear
indispensable. In particular, Dð3Þ diverges when approach-
ing irrational anisotropies where arbitrary string lengths are
possible. This raises the interesting question of how these
types of bound states can be incorporated in an effective
field theory.
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