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The orbital-selective electronic behavior is one of the most remarkable manifestations of strong
electronic correlations in multiorbital systems. A prominent example is the orbital-selective Mott transition
(OSMT), which is characterized by the coexistence of localized electrons in some orbitals, and itinerant
electrons in other orbitals. The state-of-the-art theoretical description of the OSMT in two- and three-
dimensional systems is based on local nonperturbative approximations to electronic correlations provided
by dynamical mean-field theory or slave spin method. In this work we go beyond this local picture and
focus on the effect of spatial collective electronic fluctuations on the OSMT. To this aim, we consider a
half-filled Hubbard-Kanamori model on a cubic lattice with two orbitals that have different bandwidths. We
show that strong magnetic fluctuations that are inherent in this system prevent the OSMTand favor the Néel
transition that occurs at the same critical temperature for both orbitals.
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Materials that are characterized by strong interactions
between electrons often demonstrate a nontrivial multi-
orbital character of electronic correlations. For instance,
some of these materials display signatures of the orbital-
selective Mott transition (OSMT), where itinerant and
localized electrons that live in different orbitals coexist
with each other [1–6]. The orbital-selective character of the
paring mechanism is also considered to be one of the most
important ingredients for the formation of the supercon-
ducting state in ruthenates [7–9] and iron-based super-
conductors [10–17]. An accurate description of these
effects can be performed only on the basis of advanced
theoretical methods. For instance, addressing the Mott
transition requires a nonperturbative treatment of local
electronic correlations, which can be carried out in the
framework of the dynamical mean-field theory (DMFT)
[18,19] or the slave-spin [20–22] approaches. Using these
methods in the case of realistic two- and three-dimensional
multiorbital systems is already expensive numerically and
represents the current state-of-the-art description of the
OSMT [23–28].
DMFT and slave-spin methods are usually successful in

describing physical effects related to local electronic
correlations, but neglect spatial collective electronic fluc-
tuations. Insights from model single-band systems, that are
explored more significantly [29,30], suggest that nonlocal
correlations may noticeably affect the physics of the
system. For instance, strong magnetic fluctuations signifi-
cantly reduce the critical value of the Coulomb interac-
tion for the metal-insulator transition compared to DMFT
[31–33]. In multiorbital systems, taking into account the
nonlocal collective electronic fluctuations may result in the

redistribution of the spectral weight between different
orbitals, which completely changes the scenario for the
metal-insulator transition predicted by DMFT [34]. In
addition, in realistic systems the OSMT is often accom-
panied by the presence of magnetic fluctuations [15,35–
44]. Moreover, in three dimensions the Mott insulating
phase is usually hidden inside the antiferromagnetic (AFM)
state, which also does not allow one to disregard magnetic
fluctuations when studying the OSMT.
In the case of one-dimensional systems, the density

matrix renormalization group method allows one to study
the OSMT in the presence of the nonlocal correlations and,
in particular, of a magnetic state [38,39,41–43,45–48].
However, in higher dimensions, where the physics can be
substantially different from a one-dimensional case, the
effect of the nonlocal collective electronic fluctuations on
the OSMT remains poorly understood. Indeed, describing
two- and three-dimensional multiorbital systems beyond
local approximations using accurate diagrammatic tech-
niques remains extremely expensive from the computa-
tional point of view [49–54]. On the other hand, relatively
simple (nondiagrammatic) extended DMFT approaches do
not capture the nonlocal nature of magnetic fluctuations
originating from the spatial two-particle electronic excita-
tions [55–61]. Cluster extensions of DMFT [62–66] are
also not very suitable for this purpose, because in the
multiorbital case they are able to account for only short-
range correlation effects [67–69].
In this Letter, the nonlocal collective electronic fluctua-

tions in a three-dimensional system are considered in the
framework of the dual triply irreducible local expansion
D-TRILEX method [33,70]. This approach represents a
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relatively inexpensive diagrammatic extension of DMFT
[29], where leading channels of instability are considered
simultaneously without any limitation on the range. Single-
and two-particle fluctuations in the D-TRILEX theory are
coupled by means of the lowest-order three-point vertex
corrections that are crucially important for a correct
description of the orbital and spatial structure of collective
electronic effects [71]. In this way, the D-TRILEX
approach provides a self-consistent consideration of the
feedback of collective electronic fluctuations onto single-
particle quantities [34,72,73].
We apply the D-TRILEX method to a two-orbital

Hubbard-Kanamori model on a cubic lattice, where the
OSMTwas previously addressed in the framework of local
theories. We find that in the considered system significant
magnetic fluctuations develop already at a relatively high
temperature, but in this regime their strength is orbital
dependent. Upon lowering the temperature contributions of
different orbitals to the spin susceptibility mix more
efficiently. Consequently, the strength of the magnetic
fluctuations increases and becomes orbital-independent
close to Néel temperature. We find that the Néel transition
to the ordered AFM phase occurs before the system
experiences the OSMT. Importantly, at the transition point
all orbital components of the spin susceptibility diverge
simultaneously, which indicates that the Néel transition
does not display an orbital-selective character. Moreover,
this Néel transition also persist in the presence of a nonzero
interorbital hopping that is responsible for destroying the
OSMT at low temperatures in favor of the metallic ground
state [74].
Local approximation.—A minimal model that allows

one to address the OSMT is a half-filled Hubbard model
with two orbitals that have different bandwidths. The
Hamiltonian for this model reads

H ¼
X

jj0;ll0;σ

tll
0

jj0c
†
jlσcj0l0σ þ

1

2

X

j;flg;σσ0
Ul1l2l3l4c

†
jl1σ

cjl2σc
†
jl4σ0

cjl3σ0 :

For the convenience of describing magnetic fluctuations the
interacting part of the Hamiltonian is written in the particle-
hole representation. The local interaction matrix Ul1l2l3l4 is
parametrized in the Kanamori form [75,76] with the
intraorbital U ¼ Ullll and the interorbital U0 ¼ Ulll0l0

Coulomb interactions, and the Hund’s coupling J ¼
Ull0ll0 ¼ Ull0l0l. Operators cð†Þjlσ describe annihilation (crea-
tion) of an electron on the site j, at the orbital l ∈ f1; 2g,
and with the spin projection σ ∈ f↑;↓g. To be consistent
with the previous studies, we consider a simple cubic lattice
with nearest-neighbor hoppings tll

0
hjj0i in the form of

Ref. [74]. The momentum-space representation of the
intraorbital tll and the interorbital t12 components of the
hopping matrix are

tllk ¼ −2tllðcos kx þ cos ky þ cos kzÞ;
t12k ¼ −2t12ðcos kx − cos kyÞ:

The half-bandwidth of the first orbital D1 ¼ 6t11 ¼ 1
defines the energy scale of the system. The second orbital
is chosen to be twice wider than the first one, i.e.,
D2 ¼ 6t22 ¼ 2. We also stick to the rotationally invariant
form of the interaction with U ¼ 2.4, U0 ¼ U − 2J ¼ 1.6,
and J ¼ 0.4 parameters [74].
In the absence of the interorbital hopping t12 the OSMT

has been explored in a large space of model parameters
using DMFT and slave spin methods [23–28]. In the
considered two-orbital model the OSMT can be explained
as follows. The presence of the strong Hunds coupling J
suppresses orbital fluctuations in the system, and the
correlation effects become strongly dependent on the
individual characteristics of each band [76,77]. In this
case, the relative strength of the electronic interaction can
be determined by the ratio between the interaction and the
width of the corresponding band, which favors the Mott
transition for a more narrow orbital. Remarkably, including
the interorbital hopping between the metallic and the
insulating orbitals destroys the OSMT and results in a
metallic ground state of the system. This fact was recently
reported in Ref. [74] on the basis of low temperature DMFT
calculations. We confirm this result by making finite-
temperature DMFT calculations using the program package
W2DYNAMICS [78]. To obtain the electronic density of states
(DOS), we perform the analytical continuation for the local
Green’s function from Matsubara frequency space to real
energies based on the maximum entropy method imple-
mented in the ANA_CONT package [79]. The left panel in
Fig. 1 shows the corresponding result for the electronic
density NF at Fermi energy E ¼ 0 for the narrow orbital
(l ¼ 1) as the function of the inverse temperature T−1.

FIG. 1. Local electronic DOS of DMFTobtained in the absence
(red line) and in the presence (blue line) of the interorbital
hopping t12. Left panel shows the electronic density at Fermi
energyNF computed for the narrow orbital (l ¼ 1) as the function
of the inverse temperature T−1. Vertical dashed line at T−1 ¼ 12
indicates the OSMT point. Right panel shows the orbitally
resolved DOS calculated at T−1 ¼ 40. Solid and dashed
lines correspond to narrow (l ¼ 1) and wide (l ¼ 2) orbitals,
respectively.
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We find that in the absence of the interorbital hopping (red
line) NF becomes zero around T−1 ¼ 12 (vertical dashed
black line), and the considered two-orbital system under-
goes the OSMT. As illustrated in the right panel of Fig. 1,
below the transition temperature the narrow orbital
becomes insulating (solid red line), while the wide orbital
(l ¼ 2) remains metallic with a pronounced peak in the
DOS at E ¼ 0 (dashed red line). Taking into account
t12 ¼ 0.1 drastically changes this physical picture. In this
case, the electronic density NF for the narrow orbital (blue
line in left panel of Fig. 1) first decreases with decreasing
temperature, but after some critical value of T starts to
increase again. As the result, both orbitals are metallic at
low temperatures and exhibit a quasiparticle peak at Fermi
energy. These peaks are clearly visible in the orbital-
resolved electronic DOS, which for T−1 ¼ 40 is plotted
in solid (l ¼ 1) and dashed (l ¼ 2) blue lines in the right
panel of Fig. 1. This observation raises two important
questions: does the orbital-selective metal-insulator tran-
sition exist in the case of a nonzero interorbital hopping that
is often present in realistic systems, and are local approx-
imations sufficient for describing this transition?
Effect of nonlocal magnetic fluctuations.—To go beyond

the local picture, we additionally consider the effect
of nonlocal collective electronic fluctuations using the
D-TRILEX approach [33,70]. This method allows for a
self-consistent and simultaneous description of spatial
charge and spin fluctuations that are treated diagrammati-
cally beyond DMFT [34,72,73]. To avoid the double count-
ing of local correlation effects that are already taken into
account in DMFT, the self-energy Σ̃ and the polarization
operator Π̃ in the D-TRILEX theory are constructed in an
effective “dual” space in terms of corresponding interacting
Green’s functions G̃ll0 , renormalized charge and spin inter-
actions W̃ch=sp

l1l2l3l4
, and exact local three-point vertex correc-

tions. Diagrammatic expressions for Σ̃ and Π̃ are shown in
Fig. 2. The dual quantities are calculated self-consistently
using the standard Dyson equations. After that, the physical
Green’s functionGll0 and the charge and spin susceptibilities
Xch=sp
l1l2l3l4

are obtained using the exact relations between
the corresponding dual and lattice quantities [33,70].
Multiorbital D-TRILEX calculations are performed on the
basis of the numerical implementation described inRef. [70].

The momentum-resolved spin susceptibility Xsp
lll0l0 ðq;ωÞ

calculated at zero frequency ω ¼ 0 displays a strong
instability with the maximum value at the wave vector
Q ¼ fπ; π; πg. This fact indicates that the considered
system exhibits strong AFM fluctuations. In turn, charge
(Xch

lll0l0 ) and orbital (Xch
ll0ll0 ¼ Xsp

ll0ll0 ) fluctuations are weak,
and their effect on the OSMT can be neglected. In a single-
orbital case, the critical temperature for the Néel transition
to the AFM state depends on the relative strength of the
interaction compared to the bandwidth (see, e.g., Ref. [80]).
For this reason, one can naively expect that in the system,
where the orbitals have different bandwidths, strong mag-
netic fluctuations may result in the orbital-selective Néel
transition. However, in practice this can happen only for the
totally uncoupled orbitals. In a more realistic situation,
the susceptibility Xch=sp

l1l2l3l4
has a complex orbital structure, in

particular, due to the presence of interorbital components
U0 and J in the interaction matrix. When collective
electronic fluctuations are strong, contributions of different
orbitals to the susceptibility can mix so efficiently that it
may completely change the physical behavior of the system
[71]. This fact also applies to the current problem. Figure 3
shows the temperature dependence of different orbital
components of the AFM susceptibility Xsp

lll0l0 ðQ;ω ¼ 0Þ.
For illustrative purposes, we plot the inverse value of each
component as a function of the inverse temperature. We
find that at a relatively high temperature (T−1 ¼ 5) all three
orbital components of the susceptibility are different, with a
dominant contribution of the intraorbital Xsp

llll parts. At this
temperature the AFM fluctuations are yet not very strong,
which is confirmed by a not very large leading eigenvalue
(λ) of the Bethe-Salpeter equation in the orbital space
calculated for the spin channel: λ ¼ 0.58 for t12 ¼ 0.0 and
λ ¼ 0.62 for t12 ¼ 0.1. Lowering the temperature signifi-
cantly increases the strength of the AFM fluctuations.

FIG. 2. Diagrams for the self-energy Σ̃ and the polarization
operator Π̃ of the D-TRILEX approach. Orbital dependence is
explicitly shown by numbers. G̃ and W̃ are, respectively, the
Green’s function and the renormalized interaction used in this
theory. Gray triangles depict local vertex corrections.

FIG. 3. Temperature dependence of the intraorbital X1111 and
X2222 and the interorbital X1122 components of the spin suscep-
tibility Xsp

lll0l0 calculated at zero frequency ω ¼ 0 at the anti-
ferromagnetic wave vector Q ¼ fπ; π; πg. Results are obtained
for the interorbital hopping t12 ¼ 0.0 (left panel) and t12 ¼ 0.1
(right panel). The vertical dashed line at T−1 ¼ 8.75 (left panel)
and T−1 ¼ 8.25 (right panel) indicates the Néel transition point at
which all the components of the spin susceptibility diverge.
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At the inverse temperature T−1 ¼ 8.5 for the case of
t12 ¼ 0.0 and at the T−1 ¼ 8.0 for t12 ¼ 0.1 the leading
eigenvalue of the AFM fluctuations is already λ ¼ 0.99.
This fact indicates that the contributions of different orbitals
to the susceptibility are thoroughly mixed, which explains
the nearly identical values of the Xsp

1111, X
sp
1122, and Xsp

2222

components at low temperatures. Remarkably, the interor-
bital hopping does not play an important role in mixing
different orbital components in the susceptibility, because
this effect takes place even in the absence of t12. As has been
shown in Ref. [71], the mixing of orbital degrees of freedom
mainly comes from the three-point vertex corrections that
depend on four orbital indices as explicitly shown in Fig. 2.
Without these vertices, the orbital structure of the polariza-
tion operator is determined only by the Green’s functions G̃
that in the absence of the interorbital hopping are diagonal in
the orbital space. In this case, the intra- and interorbital
contributions to the susceptibility are connected only via the
interaction matrix, which does not result in a very efficient
mixing of the orbital degrees of freedom [71].
Fitting the temperature dependence of the AFM suscep-

tibility by an exponential function shows that all three
components of the susceptibility diverge at the same
temperature. Indeed, the inverse of each component
becomes zero at T−1 ¼ 8.75 for the case of t12 ¼ 0.0
and at T−1 ¼ 8.25 for t12 ¼ 0.1. This result means that the
Néel transition for both orbitals occurs simultaneously and
does not display an orbital-selective character. This obser-
vation suggests that the Hund’s coupling considered in the
model does not decouple the orbital degrees of freedom in
the nonlocal collective electronic fluctuations contrary to
what has been found for the local correlation effects
[76,77]. Remarkably, the critical temperature (T−1 ¼ 12)
for the OSMT in the absence of t12 is lower than the Néel
temperature. Thus, strong magnetic fluctuations in the
considered system prevent the orbital-selective metal-insu-
lator transition and drive the system toward the AFM
ordered phase with two insulating orbitals. The presence of
the interorbital hopping does not change this physical
picture. In this case, the Néel transition is shifted to a
higher critical temperature, and instead of the metallic state
predicted by DMFT [74] the system also becomes the AFM
insulator.
The signature of the metal-insulator transition for both

orbitals can also be found in the electronic spectral
function. Indeed, the divergence of the susceptibility at
the momentum Q that defines the ordering vector in the
instability channel results in the divergence of the corre-
sponding renormalized interaction W̃. This divergent inter-
action enters the electronic self-energy Σ̃ (see Fig. 2) and
leads to a formation of a pseudogap in the electronic
spectral function [73,81–84]. Note that our calculations are
performed in the paramagnetic phase at temperatures above
the transition point. For this reason, we can only capture
the formation of the pseudogap, which below the Néel

temperature becomes a true gap due to the long-range AFM
ordering. Figure 4 shows the orbital-resolved local elec-
tronic DOS obtained for the case of t12 ¼ 0.1 at the inverse
temperature T−1 ¼ 8.2. This is the closest point to the Néel
transition where we could converge numerical calculations
[85]. DMFT (blue lines) predicts different behavior for the
two orbitals. The narrow orbital depicted by a solid line is
almost in the Mott-insulating regime, but has a finite
electronic density at Fermi energy according to the result
of Ref. [74]. The wide orbital demonstrates a correlated
metallic behavior (dashed line). It has a relatively large
density of electrons at zero energy and two side peaks
that correspond to the Hubbard subbands. Taking into
account the nonlocal collective electronic effects via the
D-TRILEX approach strongly suppresses the electronic
density at Fermi energy (red lines). The most remarkable
change in the DOS occurs for the wide orbital, where
magnetic fluctuations turn the quasiparticle peak at the
Fermi energy (E ¼ 0) into a pseudogap. The density of
electrons at the Fermi energy is also diminished for the
narrow orbital, but this change is not that striking, because
in DMFT this orbital already exhibits a pseudogap.
Conclusions.—In this Letter we investigated the effect of

the nonlocal collective electronic fluctuations on the OSMT
in the two-orbital Hubbard-Kanamori model with different
bandwidths. We have shown that in the absence of the
interobital hopping strong magnetic fluctuations prevent
the OSMT that was predicted for this model using local
approximations for electronic correlations. Instead, the
system undergoes the Néel transition, which occurs above
the Mott transition at the same critical temperature for both
orbitals. We have shown that taking into account the
interorbital hopping t12 does not change this physical
picture. Considering t12 only slightly shifts the Néel

FIG. 4. The orbitally resolved local electronic DOS calculated
using DMFT (blue lines) and D-TRILEX (red lines) methods.
Solid lines correspond to the first (narrow) orbital. Dashed lines
depict the DOS of the second (wide) orbital. The results are
obtained for the case of t12 ¼ 0.1 at the inverse temperature
T−1 ¼ 8.2 close to the Néel transition point.
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temperature upward but does not result in a metallic ground
state that was recently predicted by DMFT [74]. In this
case, the Néel transition also occurs at higher temperatures
before the OSMT is destroyed due to the presence of the
interorbital hopping.
Our results suggest that the OSMT should rather occur in

systems, where the nonlocal collective electronic instabil-
ities are suppressed. For instance, one can explore doping
the system [23,27,34], which usually reduces the strength
of magnetic fluctuations. In this context one should avoid
having van Hove singularities at Fermi energy in the
electronic spectrum, because they enhance collective elec-
tronic instabilities [86–88]. On the other hand, the dynami-
cal orbital-selective metal-insulator transitions that are
driven by collective electronic fluctuations can probably
be found in systems, where the orbital degrees of freedom
in these two-particle fluctuations are decoupled. However,
as we illustrated in this Letter, this separation of the orbital
degrees of freedom cannot be provided by the Hund’s
exchange coupling that acts as a band decoupler for the
local electronic correlations [76,77].
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