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Intervalley scattering involves microscopic processes that electrons are scattered by atomic-scale defects
on the nanoscale. Although central to our understanding of electronic properties of materials, direct
characterization and manipulation of range and strength of the intervalley scattering induced by an
individual atomic defect have so far been elusive. Using scanning tunneling microscope, we visualize and
control intervalley scattering from an individual monovacancy in graphene. By directly imaging the
affected range of monovacancy-induced intervalley scattering, we demonstrate that it is inversely
proportional to the energy; i.e., it is proportional to the wavelength of massless Dirac fermions. A giant
electron-hole asymmetry of the intervalley scattering is observed because the monovacancy is charged. By
further charging the monovacancy, the bended electronic potential around the monovacancy softens the
scattering potential, which, consequently, suppresses the intervalley scattering of the monovacancy.
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Exploring the nature of emergent physical phenomena
induced by atomic defects requires nanoscale measure-
ments. One representative example is the monovacancy-
induced local magnetism in graphene. Early transport and
magnetic measurements of mesoscopic graphene samples
with amount of vacancies reported either Kondo effect or
spin-half paramagnetism, confirming the existence of local
magnetism in these systems [1,2]. However, the measured
magnetic moment per monovacancy was only ∼0.1μB,
much smaller than ∼1.5μB predicted in theory [3]. Later,
nanoscale spectroscopy studies on an individual mono-
vacancy revealed different magnetic states [4–6], helping
us to understand the much smaller magnetic moment in
mesoscopic measurements. Moreover, nanoscale measure-
ments on atomic defect may reveal results beyond that in
mesoscopic measurements. Recent experiments demon-
strate that the local wave front dislocations induced by
an individual atomic impurity reveal Berry phase signatures
of the system [7–9].
Besides the local magnetism, the most relevant electronic

property induced by monovacancy in graphene is the
intervalley scattering. In pristine graphene, electrons have
valley degree of freedom, providing the opportunity of
information coding and processing [10–14]. However,
atomic defects can generate intervalley scattering [15–32],
which greatly limits the ability to manipulate the valley.
Previous studies on defect-induced intervalley scattering
mainly relied on mesoscopic transport measurements

[25–36]. However, the scattering centers in transport
measurements are always random and disordered, and their
types and charge states are indistinguishable, owing to the
lack of spatial resolution. In such a case, many seemingly
contradictory phenomena were observed in transport mea-
surements, including weak localization and weak antiloc-
alization [25,26], as well as electron-hole symmetry and
asymmetry effects [32,35,36], which need further explora-
tion. In this Letter, we report nanoscale probing of
intervalley scattering induced by an individual monova-
cancy in graphene via scanning tunneling microscopy
(STM) and scanning tunneling spectroscopy (STS). Our
experiment indicates that the affected range of monova-
cancy-induced intervalley scattering is proportional to the
wavelength of massless Dirac fermions in graphene. A
giant electron-hole asymmetry of intervalley scattering is
observed because the monovacancy is charged. By further
charging the monovacancy, the scattering potential around
the monovacancy is softened and, consequently, suppresses
the intervalley scattering. Our results provide an in-depth
understanding of rich transport phenomena from a micro-
scopic point of view.
In our experiments, multilayer graphene with monova-

cancies is directly synthesized on Ni foils via chemical
vapor deposition, and then it is transferred onto a SiO2=Si
wafer (see Methods and Fig. S1 in Supplemental Material
[37]). There is usually a rotational misalignment between
the graphene layers, resulting in moiré patterns in STM
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images. Figure 1(a) shows a representative STM image of a
monovacancy in the topmost graphene layer of twisted
bilayer graphene (TBG) with the twist angle θ ≈ 6°. The
two graphene layers are electronically decoupled [45–51],
which can be experimentally verified by the π Berry phase
signature and Landau level spectroscopy, as illustrated
subsequently.
The atomic-resolution STM image of a monovacancy

in the AB-stacked region of TBG exhibits a distinctive
triangular
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R30° interference pattern [Fig. 1(a)],

which is similar to that in single-layer graphene (SLG) [4–
6,52,53]. The location of the monovacancy has almost no
influence on the studied phenomena in our current work,
owing to the electronic decoupling of the topmost graphene
sheet [45–51]. Figure 1(b) shows the fast Fourier transform
(FFT) image of Fig. 1(a). The outer (inner) six bright spots
are the reciprocal lattice of the topmost SLG (TBG), and the
middle six bright spots located at K and K0 valleys arise
from the monovacancy-induced intervalley scattering.
From the inverse FFT by filtering a pair of K and K0
valleys, we find the number of additional wave fronts N is
always 2 around the monovacancy, as highlighted by blue
dashed lines in Fig. 1(c), which is attributed to the rotation
of sublattice pseudospin during the intervalley scattering
process and is a signature of π Berry phase [7–9].
Therefore, our experiments demonstrate that the topmost
graphene layer behaves as a SLG.
Now we explore the electronic properties around an

individual monovacancy in graphene under perpendicular
magnetic fields B. Figures 1(d) and 1(e) show spatially

resolved STS spectra recorded across the monovacancy
under B ¼ 0 and 8 T, respectively (see Fig. S2 for more
data [37]). Away from the monovacancy, the STS spectra

FIG. 1. (a), (b) Atomic resolution STM image and corresponding FFT image of a monovacancy in TBG. (c) FFT-filtered STM image
along a specific direction of the intervalley scattering. (d) Typical STS spectra recorded on and off the monovacancy under 0 T. The Vπ

state and ED are marked. (e) The evolution of STS spectra recorded across the monovacancy under 8 T. The monovacancy locates at
0 nm. The Landau level indices are marked.

FIG. 2. (a)Atomic structure of TBGwith θ ≈ 6°. Amonovacancy
is located at the AB-stacked region of TBG, as marked by the black
circle. The red and blue spheres indicateC atoms of the topmost and
underlying graphene layers, respectively. (b) Band structure of a
monovacancy in TBG. (c) Δρ around the monovacancy with the
isosurface value of 0.0015 e=Å3. Red and blue clouds indicate the
electron accumulation and depletion, respectively.
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exhibit a typical V shape under 0 T, together with the
Landau quantization of massless Dirac fermions under 8 T,
implying the two graphene layers are decoupled [46–51].
As approaching to the monovacancy, the monovacancy-
induced Vπ state gradually appears and splits into two spin-
polarized states [3,5]. In the following, we mainly focus on
the energy of the Vπ state. We find the Vπ state in TBG
usually lies at several tens of meV below the Dirac point
ED, which is quite different from that in the SLG where the
Vπ state is just at ED [3].
To understand such a phenomenon, we carry out density

functional theory (DFT) calculations of a monovacancy in
the AB-stacked region of TBG with θ ≈ 6°. As shown in
Fig. 2, the monovacancy-induced Vπ state in TBG always
lies below ED and exhibits site-independent features, which
are consistent with our experiments. To gain further insight,
we calculate the spatially resolved charge density difference
Δρ around the monovacancy, which can intuitively reflect
themonovacancy-induced interlayer charge transfer in TBG
(see Supplemental Material [37]). From Fig. 2(c), we can
observe an obvious electron transfer from the underlying to
the topmost layer of TBGaround themonovacancy,which is
the root cause of the energy-separated Vπ state and ED.
Now we concentrate on the spatial distribution of

monovacancy-induced intervalley scattering in TBG.

Figures 3(a) and 3(b) show STM images recorded under
0 T at the sample bias of −0.2 and −0.5 V, respectively.
The range of the monovacancy-induced intervalley scatter-
ing d can be defined from the real-space STM images as the
distance from the monovacancy to the scattering termina-
tion point where the
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interference patterns are

absent, as marked in Figs. 3(c) and 3(d), respectively
(the values d acquired in STM images and STS mappings
are almost the same; more details are given in Figs. S3–S5
[37]). When approaching the vacancy ED, the range of
monovacancy-induced intervalley scattering significantly
increases and extends to the whole 15 × 15 nm2 STM
images when reaching ED (Fig. S6 [37]). The measured
electron energy E versus 1=d is summarized in Fig. 3(e),
which exhibits a linear relationship. Taking into account the
linear dispersion of the charge carriers in graphene, our
result indicates that the affected range of intervalley scatter-
ing by an individual monovacancy is proportional to the
wavelength of massless Dirac fermions. Therefore, the
intervalley scattering of mesoscopic graphene samples
with a certain density of monovacancies can be much
enhanced when the Fermi energy EF is near ED. This result
explains the origin of the transition from weak localization
to weak antilocalization in graphene when the energy of
carriers is tuned away from ED in previous transport

FIG. 3. (a), (b) STM images of a monovacancy in TBG acquired at −0.2 and −0.5 V with 512 × 512 pixels, respectively. The yellow
dashed circles indicate the ranges of monovacancy-induced intervalley scattering. (c), (d) Line profiles of the red arrows in (a) and (b).
The arrows indicate the locations of the carbon atoms in the topmost graphene layer. The alternate heights marked by black and light
gray arrows for x < d imply the existence of signal from the intervalley scattering, while the homogeneous heights marked by dark gray
arrows for x > d imply the negligible signal from the intervalley scattering. The x ¼ d is the length of the intervalley scattering,
determined as the position when the difference of the apparent heights between two adjacent carbon atoms is less than 1 pm or the
apparent heights no longer follow the rule of alternation. (e) A linear relation between (E − ED) and 1=d.
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measurements [54]. Moreover, the absolute values of slopes
for E versus 1=d are 0.90 and 1.32 for electrons and holes,
respectively. Such a giant electron-hole asymmetry of the
intervalley scattering is attributed to the fact that the
monovacancy is charged, thus resulting in the charge carriers
being scattered more strongly when they are attracted to the
charged defect than when they are repelled from it.
Theoretically, the charge state of the monovacancy

in graphene can be tuned by doping the Vπ state. In our
experiments, the charge state of monovacancy can be
reversibly tuned byperpendicularmagnetic fields. Figure 4(a)
shows representative STS spectra acquired at the monova-
cancy as a function of B from 0 to 8 T. Apart from the
evolution of the Landau levels, the Vπ state becomes more
localized as increasing B. Moreover, the Vπ state trends to
monotonously shift from −7 meV under B ¼ 0 T toward a

lower energy, and reaches the minimum of −26 meV under
B ¼ 8 T, as shown in Fig. 4(a). Such a phenomenon, on
the one hand, is attributed to the redistribution of electronic
states of graphene beneath the STM tip that are generated
by the confinements of tip-induced electronic potentials
and external magnetic fields (Fig. S7 [37]), as demonstrated
recently [55–64]. On the other hand, is attributed to the
existence of electron transfers between the adjacent two
graphene sheets around the defect, based on our STS
measurements (Fig. 1) and DFT calculations (Fig. 2).
Theoretically, a monovacancy in graphene can host

a local positive charge [48,65,66]. As shown in Figs. 4(b)
and 4(c), the monovacancy is expected to be neutral when
the Vπ state is fully filled, and is gradually charged with the
Vπ state shifting across EF [34]. In our experiments,
the charge states of a monovacancy under B can be

FIG. 4. (a) The evolution of STS spectra recorded at the monovacancy as a function of B. The Vπ states, ED, EF, and the Landau level
indices are labeled. (b) Schematic DOS at the monovacancy in TBG. The Vπ state is partially filled under 0 T, implying the
monovacancy is charged. As increasing B, the Vπ state is gradually filled and finally fully filled under 8 T, implying the monovacancy is
nearly neutral. (c) Schematic scattering of carriers induced by neutral and charged monovacancy. (d) ΔE0 LL and Z as a function of B.
(e) Line profiles along the directions ofG-Γ-G0 andK-Γ-K0 in the FFT images at 0.5 Vunder 8 T. (f) IK=IG versus Z. Inset: Schematic of
intervalley scattering.
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precisely monitored by the spatial-resolved Landau level
spectroscopy. As shown in Fig. 1(e), we can observe an
energy down-shift of N ¼ 0 LL, ΔE0LL, near the mono-
vacancy relative to its value far away.ΔE0LL can be derived
from the screening of a charged monovacancy as ΔE0LL≈
−ðZ=κÞ½e2=ð4 ffiffiffiffiffiffi

2π
p

ε0lBÞ�. Here ε0 is the permittivity of free
space, e is the electron charge, lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðeBÞp
is the

magnetic length, ℏ is the reduced Planck constant, and κ
is the effective dielectric constant [48,66,67]. Therefore, the
charge stateZ of themonovacancy in graphene under various
B can be precisely extracted, as summarized in Fig. 4(d).
Obviously, the Z shows an approximately monotonous
decreasing from 0.5 to 0.2 as B increases from 1.5 to
8.0 T, and can be extrapolated to Z ≈ 0.6 when B ¼ 0 T.
The intensity of monovacancy-induced intervalley scat-

tering in graphene can be strongly influenced by the charge
states. By charging the monovacancy, the monovacancy-
induced scattering potential is softened from atomically
sharp to long-range, which efficiently suppresses the
intervalley scattering [Fig. 4(c)]. Figure 4(e) shows line
profiles along the directions of G-Γ-G0 and K-Γ-K0 in FFT
images acquired from STS maps under B ¼ 8 T at 0.5 V
(Fig. S8 [37]). The intensity ratio of intervalley scattering
IK and reciprocal lattice IG, IK=IG, as a function of Z is
summarized in Fig. 4(f). As Z decreases, IK=IG gradually
enhances, together with the increasing range of

ffiffiffi
3

p
×
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3

p
interference patterns in real space. Our results explicitly
verify that the intensity of monovacancy-induced interval-
ley scattering is strongly suppressed when the monova-
cancy is charged, as schematically shown in Fig. 4(c).
In summary, we directly image the intervalley scattering

induced by an individual monovacancy in graphene. The
affected range of monovacancy-induced intervalley scatter-
ing is proportional to the wavelength of massless Dirac
fermions in graphene, accompanied by a giant electron-
hole asymmetry. By further charging the monovacancy, the
scattering potential around the monovacancy is softened
and, consequently, suppresses the intervalley scattering.
Our results pave the way to control the intervalley scatter-
ing in multivalley systems, promoting the development of
valleytronics.
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