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Structural glasses formed by quenching a melt are known to host a population of low-energy
quasilocalized (nonphononic) excitations whose frequencies ω follow a universal ∼ω4 distribution as
ω → 0, independently of the glass formation history, the interparticle interaction potential, or spatial
dimension. Here, we show that the universal quartic law of nonphononic excitations also holds in
disordered crystals featuring finite long-range order, which is absent in their glassy counterparts. We thus
establish that the degree of universality of the quartic law extends beyond structural glasses quenched from
a melt. We further find that disordered crystals, whose level of disorder can be continuously controlled, host
many more quasilocalized excitations than expected based on their degree of mechanical disorder—
quantified by the relative fluctuations of the shear modulus—as compared to structural glasses featuring a
similar degree of mechanical disorder. Our results are related to glasslike anomalies experimentally
observed in disordered crystals. More broadly, they constitute an important step toward tracing the essential
ingredients necessary for the emergence of universal nonphononic excitations in disordered solids.
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Introduction.—It is now established that structural
glasses formed by quenching a melt generically feature a
population of soft, quasilocalized (nonphononic) excita-
tions (QLEs) [1]. These excitations play key roles in
determining various static, mechanical, transport, and
dynamic properties of glasses, and possibly of some
supercooled liquids as well [2–5]. QLEs have been envi-
sioned, and their importance has been underlined, since the
late 1980s by several workers, as described in detail in a
recent review [1]. A first-principle understanding of low-
energy quasilocalized excitations in structural glasses is
still incomplete, despite some recent progress in identifying
and solving potentially relevant mean-field models [6–9].
Intriguingly, the vibrational density of states (VDOS)

DðωÞ of low-energy QLEs—of vibrational frequency ω—
has been shown to follow a universal law in structural
glasses, of the form DðωÞ ∼ ω4, independently of the
interparticle interaction potential [10,11], spatial dimension
[12], or the glass formation protocol [13–15]. Does this
nonphononic quartic law remain valid in a broader class of
disordered solids, beyond structural glasses formed by
quenching a melt? Can it be observed in disordered solids
featuring some long-range order? In this Letter, we address
these questions by studying the statistical, structural, and
mechanical properties of soft excitations that emerge in a
class of disordered crystals. To this aim, we study a variant
of a model put forward by Barrat and coworkers [16–18] in
which microscopic disorder can be gradually introduced
into an initially perfectly crystalline solid, until the occur-
rence of a global amorphization transition of the disordered
crystal into a glassy state. Related procedures were carried
out in other systems [19–22].

In this Letter, we employ a three-dimensional disordered
crystal model in which the external pressure is fixed under
variations of the microscopic disorder, controlled by a
dimensionless parameter δ ∈ ½0; 1� (δ ¼ 0 corresponds to a
perfect crystal). Additional model details appear below and
in [23]. After identifying the amorphization transition
point, we study the vibrational spectra of disordered
crystals prior to amorphization, i.e., in states featuring
finite long-range crystalline order. We find that these
disordered crystals host a population of QLEs whose
frequencies obey the universal ∼ω4 nonphononic law.
We thus establish that the degree of universality of the
nonphononic quartic law of QLEs in disordered media
extends beyond structural glasses quenched from a melt.
These results also shed new light on low-temperature,
glasslike thermodynamic, transport, and vibrational anoma-
lies observed in laboratory disordered crystals [34–44].
Finally, we assess the degree of mechanical disorder of

these disordered crystals, and compare their relative abun-
dance of QLEs to that found in structural glasses featuring
similar degrees of mechanical disorder. This analysis
reveals, surprisingly, that these disordered crystals host
many more QLEs as compared to structural glasses. We
also show that the micromechanical properties of QLEs in
disordered crystals, e.g., their degree of spatial localization
and stability bounds, reveal striking similarities to the
corresponding QLEs’ properties in structural glasses.
Disordered crystals model and the amorphization

transition.—We employ a binary system of N Lennard-
Jones particles among which a fraction x is of one species
(“small” particles) and the remaining are of another species
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(“large” particles). One species may be regarded as
“impurity atoms” relative to the other species (“host
atoms”), as is extensively used in laboratory disordered
crystals. The parameter δ determines the effective inter-
action of the two species, such that δ ¼ 0 corresponds to a
monodisperse system, while δ ¼ 1 corresponds to the
largest-considered interaction contrast between the two
species. Details about the pairwise interaction potential
and system sizes employed are provided in [23].
Throughout this Letter, we fix x ¼ 1=2, such that δ ¼ 1
corresponds to a 50∶50 binary mixture extensively
employed in computer glass-forming models. We have
verified that the key results reported below do not quali-
tatively depend on the precise choice of x.
Disordered crystals are generated by first placing the two

particle species randomly on a perfect face-centered-cubic
(fcc) lattice, and setting δ ¼ 0. Then, for each value of the
parameter δ > 0, the potential energy is relaxed under fixed
zero confining pressure to obtain a disordered crystal. This
energy relaxation step spontaneously generates positional
disorder and internal stresses, absent in the reference fcc
lattice. Continuously varying δ gives rise to a class of
disordered crystals with a varying degree of disorder. Once
δ exceeds a critical value—to be determined next—the
disordered crystal collapses into a glassy state via a so-
called “amorphization transition” [16–18].
To quantitatively identify this transition, we study the

behavior of χ, the relative sample-to-sample fluctuations of

the shear modulus G, defined as χ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðG − ḠÞ2

q
=Ḡ,

where •̄ denotes a sample-to-sample average. The quanti-
fier χ was discussed at length in [11,24–27] and was
shown to determine wave attenuation rates in the harmonic
regime [25,27]. Here, we use a jackknifelike method to
approximate χ; see details in [26]. We also consi-
der the ratio Gna=G of the nonaffine Gna ¼ V−1ðð∂2U=
∂γ∂xÞ ·H−1 · ð∂2U=∂x∂γÞÞ to total shear modulus G. Here,
γ is the shear-strain parameter [11], UðxÞ denotes the
potential energy as a function of the particles spatial
coordinates x, and H is the Hessian matrix. The nonaffine
contribution to the shear modulus,Gna, is intimately related
to material disorder, most notably to deviations from
crystalline long-range order, and hence is of interest here.
Figure 1 displays our results for χ (main panel) and

Gna=G (inset) under variations of the control parameter δ.
While Gna=G varies smoothly and monotonically with δ,
χðδÞ exhibits a rather sharp peak, which enables the
identification of the amorphization transition. The corre-
sponding onset threshold δc, which for x ¼ 1=2 takes the
value δ ≈ 0.49, is marked by the vertical dashed line. The
black squares pertain to the disordered-crystal ensembles
that we study next, for which δ < δc.
To further substantiate the amorphization transition at

δc and to establish the existence of finite long-range order
in our disordered crystals for δ < δc, we consider the
pair correlation function gðrÞ among the “large” particle

species; results for δ ¼ 0.38, 0.44, 0.49, 0.70 are shown in
Fig. 2. We find that solids with δ≲ δc all feature finite long-
range order, indicated by the presence of peaks in
gðrÞ that persist to the largest distances r considered. In
particular, long-range order is clearly present in the
ensembles pertaining to δ ¼ 0.38 to δ ¼ 0.44, which are
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FIG. 1. Dimensionless quantifiers of mechanical disorder
across the amorphization transition: the main panel shows the
relative sample-to-sample fluctuations of the shear modulus χ;
see definition in main text. These data were measured over about
700 independent realizations of systems of N ¼ 108 000 particles
at fixed vanishing pressure. The vertical line marks an estimation
of the transition point at δc ≈ 0.49. The black squares mark the
disordered-crystal ensembles studied below, namely δ ¼ 0.38,
0.40, 0.42, 0.44, all of which are located below the amorphization
transition. Inset: the ratio Gna=G vs δ; see text for discussion.

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

0 10 20 30
0

1

2

3

)b()a(

(d)(c)

FIG. 2. (a)–(d) Pair correlation functions gðrÞ between the
“large” particle species (see Ref. [23] for details), measured for
ensembles of disordered solids of N ¼ 108 000 particles crea-
ted with different δ values, as indicated in the legends. r is
normalized by the interparticle distance a0 ≡ ðV=NÞ1=3, where V
is the solid’s volume. We indeed find that all the way up to the
amorphization transition at δc ≈ 0.49, long-range order persists.
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studied next. We focus on this intermediate δ range because
it is below the amorphization transition, yet the disordered
crystalline states in this range feature disorder levels
(cf. Fig. 1) that make the identification of glassy properties
quantitatively and computationally feasible.
Universal nonphononic VDOS.—To study QLEs in

disordered crystals, it is important to select sufficiently
small systems such that a phonon-free frequency window
opens below the first shear-wave frequency, as explained at
length in [1]. Furthermore, since QLEs that emerge in
structural glasses are characterized by a core size ξg—
usually on the order of a few interparticle distances [1,14]
—it is also important that the linear system size is chosen to
be sufficiently larger than ξg, in order for QLEs to fit
comfortably in the simulation box [1,45]. To accommodate
these two requirements, we opt for studying emergent
QLEs in disordered crystals of N ¼ 1372 particles. We
prepared 667 900, 297 600, 150 000, and 109 600 inde-
pendent realizations of disordered crystals with δ ¼ 0.38,
0.40, 0.42 and 0.44 (all below δc), following the protocol
described above and in [23]. For each disordered crystal,
we calculated the first 30 nontrivial vibrational modes ψω

as defined in [23].
The resulting VDOS are shown in Fig. 3(a), which

presents a key result of this Letter. We find that disordered
crystals featuring finite long-range order host a population
of quasilocalized modes whose frequencies obey the
universal ∼ω4 law. We next turn to discussing the nonuni-
versal prefactor Ag in the full expression of the VDOS,
DðωÞ ¼ Agω

4. The prefactor Ag, of dimension ½time�5,

serves as an indicator of the abundance of soft QLEs
[13,46]. As such, it was the focus of several recent studies
[11,14,26,47,48]; notably, Ag strongly correlates with the
tensile fracture toughness of glassy solids [47]. The
prefactors Ag of our disordered crystals—obtained here
by fits to a ∼ω4 power law at low frequencies (straight
lines)—are reported in Fig. 3(b). We find an approximate
exponential dependence of Ag on the parameter δ, remi-
niscent of the Boltzmann-like dependence of Ag on the
equilibrium parent temperature of structural glasses
quenched from deeply supercooled liquids [14,49]. A
similar exponential decay of Ag was also observed recently
in a mean-field spin-glass model [6].
QLE properties.—We next study some of the structural

properties of low-frequency QLEs that emerge in our
disordered crystals. To this aim, we invoke the nonlinear
framework of [28,29], which provides a robust representa-
tion of soft QLEs, denoted as π (see also Ref. [23]). We first
focus on the spatial decay of QLEs, which is presented in
the inset of Fig. 3(a) for two randomly selected nonlinear
modes. It is observed that similarly to QLEs in structural
glasses [1], QLEs in our disordered crystals feature a
disordered core of a few interparticle distances, followed
a power law ∼r−2 tail (i.e., ∼r−đþ1 in three dimensions,
đ ¼ 3).
The degree of spatial localization of QLEs is further

discussed next, by considering the participation ratio e,
defined as eðπÞ≡ N−1ðPi πi · πiÞ2=

P
iðπi · πiÞ2. Here, πi

denotes the đ-dimensional vector of Cartesian components
pertaining to the ith particle of a QLE π. The participation
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FIG. 3. (a) The vibrational density of states of disordered crystals, for different values of the parameter δ (as indicated in the legend),
plotted against rescaled frequency ω=ω0, where ω0 ≡ cs=a0 with cs being the shear wave speed. The continuous lines correspond to fits
to the ∼ω4 law, from which the prefactors Ag are extracted. Inset: the spatial decay of (two randomly selected) soft quasilocalized
excitations π (obtained by the nonlinear framework presented in [23]) follows the expected continuumlike ∼r−2 scaling in three
dimensions; the colors match the δ values in the legend. (b) Dimensionless prefactors Agω

5
0 vs δ on a log-lin scale. (c) The productsNē—

representing the mean size of the disordered cores of QLEs (e is the participation ratio, defined in the text)—plotted vs δ. The vertical
bars cover the 2nd and third quartiles.
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ratio eðπÞ quantifies the degree of spatial localization of π:
π’s that are localized on a core of Nc particles follow
Ne ≈ Nc, whereas spatially extended π follow Ne ∼ N (or
e ∼ 1). In Fig. 3(c), we plot the factored means Nē vs δ;
here, ēwas calculated over 1000 QLEs (for each value of δ)
in systems of N ¼ 16384. We find that moving away from
the amorphization transition, giving rise to less disordered
states, leads to a stronger localization of QLEs. This
enhanced localization is reminiscent of the stronger locali-
zation of QLEs observed in structural glasses with increas-
ing glass stability, as shown in, e.g., [14,15]. In addition, we
find that QLEs in our disordered crystals satisfy similar
stability bounds as in structural glasses [23].
Mechanical-disorder quantifiers.—We turn now to

examining how dimensionless quantifiers of mechanical
disorder relate to each other in disordered crystals, and how
those compare to the corresponding relations in structural
glasses. For example, a scaling relation between Ag and the
strength of spatial fluctuations of the shear modulus
quantified by χ has been demonstrated in computer glasses
[26,47,48]. The generality of such relations between differ-
ent measures of mechanical disorder remains largely un-
explored across various classes of disordered solids. To
shed light on this important issue, we employ, in addition to
our disordered crystals dataset, a dataset of a simple glass-
forming model (see Ref. [23] for details) that can be
supercooled down to extremely low temperatures using
the swap Monte Carlo algorithm [30], spanning a broad
range of mechanical disorder.
In Fig. 4(a), we plot Gna=G vs χ for both disordered

crystals and structural glasses. Interestingly, while the data
are somewhat noisy, both datasets appear to follow similar
trends. This is an interesting commonality, which emerges
for the two classes of disordered solids that are generated by
very different preparation protocols. It may suggest that the
two quantifiers in both classes are sensitive to mechanical
disorder in a similar fashion. The situation is dramatically
different, however,when comparing the relation between the
prefactor Ag—made dimensionless by multiplying it by
ω5
0—and χ, considered in both disordered crystals and

structural glasses, as done in Fig. 4(b). Here, we find that
these two classes of disordered solids exhibit very different
Agω

5
0–χ relations. Most notably, for similar values of the

dimensionless prefactor Agω
5
0, which encodes information

about both the number and characteristic frequency of QLEs
[14,46], χ of disordered crystals is significantly smaller. Put
differently, we observe that disordered crystals appear to
feature many more QLEs than expected from the Agω

5
0–χ

relation of structural glasses. Finally, we note that in a recent
work it was found that χ of a broad variety of (computer)
structural glasses appears to be bounded from below by χ0 ≈
0.85 [50], marked by the vertical, dash-dotted line in
Fig. 4(b). Interestingly, in our disordered crystals, for the
range of δ studied here, χ breaks this apparent bound by a
significant factor.

Discussion and outlook.—We studied the emergence of
glasslike properties in disordered crystals, most notably
the emergence of low-energy, quasilocalized excitations
(QLEs), whose existence has been recently established in
structural glasses quenched from a melt [1,10,12,13]. By
continuously varying the degree of mechanical disorder in a
disordered crystals model that features an amorphization
transition, we found that below the transition—where the
disordered crystals feature finite long-range order—QLEs
emerge and their frequencies follow the universal ∼ω4

nonphononic VDOS, as in many classes of structural
glasses [1,10,12,13] and other models [6,7,9,51–54]. As
such, our results extend the degree of universality of the ω4

law to include disordered crystals.
We showed that the nonuniversal prefactor Ag of the

universal ∼ω4 VDOS, which is related to the number of
QLEs [14], varies substantially with a control parameter of
the model, similarly to an apparently related variation
observed in structural glasses [14,15]. We further found
that the micromechanical properties of QLEs in disordered
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FIG. 4. Relations between quantifiers of mechanical disorder.
(a) Gna=G vs χ for disordered crystals and structural glasses, as
indicated by the legend. The two datasets appear to approxi-
mately form a single function; see text for further discussion.
(b) The dimensionless nonphononic VDOS prefactor Agω

5
0 vs χ

for disordered crystals and structural glasses [the same symbols
as in panel (a)]. In sharp contrast to the results of panel (a), we
find that the two classes of disordered solids follow very different
curves. In particular, the disordered crystals appear to have
anomalously low χ values relative to the number of QLEs
they host.
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crystals, e.g., their spatial localization properties, resemble
those observed in structural glasses, and that they satisfy a
similar stability bound. Finally, considering interrelations
between different quantifiers of mechanical disorder in both
disordered crystals and structural glasses, striking similar-
ities and differences emerged. We discovered that the
relation between a measure of elastic nonaffinity, Gna=G,
and a measure of shear modulus fluctuations, χ, appears to
form a similar trend for both disordered crystals and
structural glasses. On the other hand, not only disordered
crystals feature χ values lower than the lowest value ever
obtained in structural glasses [50], but their AgðχÞ relation
also implies that they host many more QLEs than the
corresponding structural glasses of the same χ.
The extended validity of the universal glassy ∼ω4 VDOS

that includes also disordered crystals, as established here,
appears to be intimately related to known glasslike anoma-
lies experimentally observed in laboratory disordered
crystals at cryogenic temperatures [34–39,41–44]. Most
notably, our findings regarding the low-frequency ∼ω4

VDOS appear to be related to the existence of a ∼T5

contribution to the low T specific heat in disordered crystals
[39,41–44], in addition to a ∼T contribution associated
with two-level systems [55–57] and Debye’s ∼T3 contri-
bution of phonons [58]. In particular, as the prefactor of the
∼T5 contribution is predicted to be determined by Ag,
theoretical models such as the one studied here could guide
experiments and explain the to-be-observed variation of the
low T specific heat in disordered crystals as a function of
the degree of disorder, controlled by the species concen-
tration x. Our findings may also be related to low-temper-
ature anomalies in the heat conductivity [38] and
vibrational anomalies, such as the emergence of a Boson
peak [43], documented in disordered crystals. Overall, our
findings support the experimentally inferred suggestion
that the absence of long-range order is neither sufficient nor
necessary for the existence of the low-energy excitations
[37,38].
To more quantitatively explore the relations between the

model studied here and laboratory disordered crystals,
future work should realistically model the interactions
between different species (e.g., between impurity and host
atoms, captured here by the parameter δ) and vary the
species concentration x (fixed here at x ¼ 1=2, but see
preliminary data for varying x in [23]), which is the key
control parameter in laboratory binary disordered crystals.
In particular, as the prefactor of the ∼T5 contribution to the
specific heat would be proportional to the prefactor Ag of
the ∼ω4 VDOS, such future studies would need to resolve
Agðδ; xÞ [the results for Agðδ; x ¼ 1=2Þ, for δ defined in
[23], are shown in Fig. 3(b)]. Likewise, extensions to
multicomponent disordered crystals can be explored.
Our results also raise basic questions about disordered

solids in a broader context. One class of such questions is
concerned with the identification of the essential

ingredients necessary for the emergence of universal non-
phononic excitations in disordered solids. In this context, it
would be interesting to explore the relations between our
findings and the model of [53], which a priori assumes the
existence of soft quasilocalized excitations, and that of
[59]. Another interesting question is concerned with the
origin of the similar trends featured by the relation between
Gna=G and χ in both disordered crystals and structural
glasses, observed in Fig. 4(a), which is yet another topic for
future investigation.
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