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Laser-plasma accelerators outperform current radio frequency technology in acceleration strength by
orders of magnitude. Yet, enabling them to deliver competitive beam quality for demanding applications,
particularly in terms of energy spread and stability, remains a major challenge. In this Letter, we propose to

combine bunch decompression and active plasma dechirping for drastically improving the energy profile
and stability of beams from laser-plasma accelerators. Realistic start-to-end simulations demonstrate the
potential of these postacceleration phase-space manipulations for simultaneously reducing an initial energy
spread and energy jitter of ~1-2% to <0.1%, closing the beam-quality gap to conventional acceleration

schemes.

DOI: 10.1103/PhysRevLett.129.094801

Laser-plasma accelerators (LPAs) [1] can give rise to a
new generation of ultracompact particle accelerators with a
wide range of applications. Among others, they could
enable cost-effective coherent light sources [2,3] or injec-
tors for storage rings [4,5]. Improvements in beam quality
such as the demonstration of peaked energy spectra [6—8],
GeV energy [9-11], high current [12], and low emittance
[13—15] bring the performance of these devices closer to
that of radio frequency (rf) accelerators. Still, challenges
limiting their applicability remain, particularly regarding
the beam energy spread and stability.

Applications such as free-electron lasers (FELs) require
an energy spread <0.1% [16], yet current LPAs typically
operate in the ~1% range [17]. The main source behind this
is typically the steep slope of the accelerating fields, which
leads to beams with a strong longitudinal energy correlation
(chirp), together with various contributions to the slice
energy spread [18-20]. Many techniques have been pro-
posed for reducing the energy chirp of plasma beams, either
within the acceleration stage [21-23] or in a dedicated
external device [24-31]. A promising approach is the use of
beam loading [32-34] for flattening the average accelerat-
ing gradient along the LPA [35-38]. This has enabled the
demonstration of the first subpercent energy spread beams
capable of generating FEL radiation [3]. Nonetheless, rea-
ching the performance of conventional machines demands

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

0031-9007/22/129(9)/094801(8)

094801-1

further improvements to the energy spread as well as to the
shot-to-shot energy jitter, which currently ranges in the few
percent [3,17].

The energy stability is critical for the beam transport
downstream of the LPA, and thus for virtually any
application. Especially demanding is the injection into
diffraction-limited storage rings, where particle energy
deviations up to ~1% [39] are tolerated. This requires an
energy jitter and energy spread <0.1% rms. Recent develop-
ments in machine learning and active feedback loops
[37,40,41] offer a path toward LPAs of improved stability,
particularly with the onset of kilohertz lasers [42—44], but a
per-mille energy jitter is yet to be demonstrated.

In this Letter, we propose a technique for drastically—
and simultaneously—reducing the energy spread and
energy jitter of LPA beams in a two-step process. First,
longitudinal decompression in a magnetic chicane is used
to imprint a linear correlation between the particles’ arrival
time and energy [23,45-48]. Second, a linear longitudinal
electric field is applied to remove the imprinted correlation
and correct deviations with respect to the target energy.
This is carried out by an active plasma dechirper (APD), a
dedicated plasma stage where the wakefields are generated
by a fraction of the LPA driver. In contrast to passive
plasma dechirpers [24-27], where the wakefields are
generated by the electron beam itself, an APD takes
advantage of the intrinsic synchronization between the
LPA and APD drivers for correcting the central energy
jitter, and not only the energy spread. This combination of
chicane and APD is the first demonstration of a plasma-
based energy compression system [49,50]. Its working
principle resembles that of chirped-pulse amplification in
lasers [51]. Realistic start-to-end simulations show that this
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Basic layout and working principle of an LPA energy compressor and stabilizer. Only the LPA source and the relevant beam

line components (laser, chicane, and APD) are shown. The longitudinal phase space of the beam at different locations is also displayed,

as well as the 3D [53] wakefield structure in the APD.

method can be incorporated into state-of-the-art LPAs
[36,37] for improving the energy spread and stability by
an order of magnitude, closing the performance gap to rf
accelerators.

The combined effect of decompression and dechirping
can be studied by investigating the single-particle dynam-
ics. By establishing a reference energy y,.; as the desired
beam energy of the accelerator, a relative energy deviation
6(1) = (y(t) = ¥ret)/7ret and longitudinal coordinate {(7) =

7(1) — zwt(7) can be defined for each particle. Here, y =

1+ (p/m,c)? is the relativistic Lorentz factor, with p

and m, being, respectively, the momentum and rest mass of
an electron; c is the speed of light in vacuum; ¢ is time; z is
the longitudinal position; and z.s is the position of a
reference particle with 6 = 0 initially located at the beam
center. A dispersive section transforms the phase-space
coordinates of a particle initially at ({;, ;) to a final position
Cp =i+ Rsgb; + O(57) [52], where Rsq is the linear
dispersion coefficient, while leaving the energy unchanged.
Thus, to first order in §;, a beam with no initial correlation
between {; and o; is longitudinally stretched by a factor

o R 2
s=2% — <ﬂ) g (1)

e

while developing a linear chirp y= Ocs / ag =
R3}(1—S87%), which is y ~R5! for §?> 1. Here, o,
and o5 are the standard deviations of { and 6, and o5 is
their covariance. After decompression, the beam enters a
dechirper of length L that applies a linear longitudinal
electric field E,(¢) = —(m,c?/e)E (¢ — ) with normal-
ized slope & centered at {,, where e is the elementary
charge. Assuming a highly relativistic beam (y > 1), {
stays constant throughout the dechirper and the particle

energy is transformed into a final value:

1 E'L
of :R_(Cf_éi)'f' (&5 = Co)- (2)
56 Vref
Therefore, the energy correlation imprinted by the linear
dispersion can be removed by the dechirper if

7 ref
EL=-"=. (3)
Rse
This results in a net reduction of the beam energy spread,
whose final value is fully determined by Rs¢ as

Oy, Oy,
==t~ 4
05, Ry S (4)

where the last equality holds if S? > 1.

This technique is ideally suited for LPA beams. As
Eq. (4) shows, the typically ultrashort (~1 pm) length and
large (~1%) energy spread allow for a factor 10 decom-
pression and energy spread reduction with minimal
dispersion (Rss ~ 1 mm). In addition, the high initial peak
current (up to ~10 kA [12]) means that a final current in the
~1 kA range can still be achieved after decompression,
allowing for FEL applications. When high current is not
required, such as in storage ring injectors, an even more
drastic energy spread reduction could be realized.

As illustrated in Fig. 1, the bunch decompression can be
performed by a magnetic chicane, where path length
differences arise due to an energy-dependent transverse
deflection. This results in Rsq = 26*(L,; + 2L,,/3) [52],
where L,, and 6 are, respectively, the magnet length and
bending angle (for 6 = 0), and L, is the distance between
the central and outer dipoles.

When Eq. (3) is satisfied, Eq. (2) also yields that the final
deviation of the average beam energy is given by

(07) = - (5)

Therefore, if {; = 0, the final beam energy is stabilized to
7ref Tegardless of its initial value. This requires the ability to
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control {; independently of the beam position, i.e., with an
active dechirping medium where the fields are not gen-
erated by the beam itself. An APD accomplishes this in a
compact, plasma-based setup. It is conceptually similar to a
laser-plasma lens [54,55], but aimed at the generation of
longitudinal, instead of transverse, fields with a fraction of
the LPA driver. The intrinsic synchronization between the
LPA and APD drivers allows for a precise control of ¢,
independently of the electron beam arrival time. This setup
is also robust against realistic timing jitters between both
drivers. As obtained from Eq. (5), if Rss ~ 1 mm, a state-
of-the-art timing jitter of <10 fs [56,57] is sufficient for
achieving a per-mille energy jitter.

When the peak normalized vector potential of the APD
driver is sufficiently high (i.e., ag = 2), large plasma
electron cavitation occurs and a trailing wakefield with
uniform & is generated [cf. Fig. 2(a)]. The length of the
cavity is approximately given by the plasma wavelength
A, =2n/k,, where k, = (n,e*/m.enc*)!/> and n, are
the plasma electron wave number and density and ¢ is
the vacuum permittivity. As depicted in Fig. 1, a slit in the
center of the chicane removes particles beyond a maximum,
Omax» and minimum, &,;,, energy deviation for ensuring
that the stretched beam fits within the cavity. Imposing
a total beam extension <A,/2 yields the condition
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FIG. 2. (a)Plasma wakefields and electron beam at the center of

the APD. (b) APD density profile. (c) Energy spread and
(d) average energy deviation along the APD of beams with
initial energy deviations between +1%. The black dashed line
corresponds to a reference initial energy of 500 MeV.

/117 Z 2(5max - 5min)R56 = 2(5max - 5min)6§,/6¢3f’ which
determines the maximum plasma density for achieving a
certain final energy spread. For oy ;= 1073, o;, =1 ym
and Sypux — Oin = 0.06, 7, S8 x 10' cm™ is obtained.
The field slope £ can be estimated from the nonlinear
cold fluid equation [58] for the wakefield potential, v,
behind the driver, ie., &'({) = (()=—k;(1-1/
14+ w()]?)/2. At &y, which occurs around the center of
the cavity, y is maximum and given approximately by
wo =w(Co) ~Wwy/4 [59], where Wy = k,w, and wy is the
spot size of the laser at focus. This implies that £'({,) ~
—k3(1=1/(1 +W§/4)*)/2. Coupled with Eq. (3), this
expression allows for an estimate of the required APD
length, under the assumption that w ~ w( throughout the
dechirper. Relative to the laser Rayleigh length, Z, =
w3/l [58], the APD length is found to be L/Zp =
2 retho(4 + W3)?/[mRseW3 (8 + W3)], where A is the laser
wavelength. For Rsg =1 mm, y,.; = 103, and 4, = 800 nm,
this expression yields Wy 2 1 for ensuring L < Zy (i.e.,
w ~ wy). Under this condition, a compact, mm-long APD
can be realized without external laser guiding. Given the
typically low density and narrow driver, no self-injection
and, thus, no dark current is expected from the APD
[60,61].

The performance of the technique is demonstrated by
means of two comprehensive simulation studies of an
energy compression system. First, the setup is probed with
an ideal Gaussian electron bunch to generally assess the
energy spread and jitter correction. Second, a full start-
to-end study including a realistic LPA and relevant exper-
imental jitters validates its efficacy under real-world
conditions. The initial beam capture and final focus into
the APD are carried out by active plasma lenses [62]. This
enables a compact setup with minimal chromatic emittance
growth [63], but other options are also possible [5,64]. After
initial prototyping with WAKE-T [65], the plasma elements
are simulated with the quasi-3D particle-in-cell code FBPIC
[66] and the conventional elements with OCELOT [67],
including the effects of 3D space charge and 1D coherent
synchrotron radiation. Using LIBENSEMBLE [68], the jitter of
the setup is comprehensively evaluated with hundreds of
simulations. See Ref. [69] for additional simulation details.

The parameters of the probe Gaussian electron beam are
representative of current state-of-the-art LPAs [3,36-38],
having a 500 MeV energy with 1% rms shot-to-shot jitter,
1% rms energy spread, 1 um normalized emittance, 2 ym
transverse size, 0.5 mrad rms divergence, 10 fs FWHM
duration, and 10 pC charge. The chicane has a total length
of 2 m, with L;=50cm, L,, = 20 cm, and 8 = 34.4 mrad,
resulting in Rsq = 1.5 mm and S = 11.8. It includes a
collimating slit with a 1.4 mm horizontal aperture for
filtering particles with |5| > 3%. The APD has a 6.8 mm
plateau with a 3.2 x 10'® cm™ density and two 0.3 mm
Gaussian ramps at the entrance and exit. The APD driver is
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a 2 J Gaussian laser pulse focused at the center of the
plateau with aq = 2.15, 4y = 0.8 um, wy = 22 ym, and a
25 fs FWHM duration. The plasma lenses have a 1 cm
length, 1.62 kTm~' focusing gradient, and 10" cm™3
density. They are placed 10 cm down and upstream of
the initial beam and the APD, respectively.

Figure 2 shows the evolution of the decompressed
Gaussian beam within the APD for initial energy deviations
between +1%. The wakefields generated by the driver
effectively reduce the energy spread while simultaneously
correcting the initial energy deviations. The reference beam
has a final energy spread of ~0.10% (total) and ~0.084%
(slice average). This agrees with Eq. (4), which predicts a
value of 0.085%. The total energy spread is larger due to
nonlinearities in £, arising mostly from beam loading. The
efficacy of the energy compression can be clearly seen in
Fig. 3. The results from 300 simulations show that the
initial energy jitter of 1% is reduced to 0.023%. Similarly,
the initial energy spread of 1% is reduced by a factor of
~10 to (0.1072 4 0.0059)%. The final normalized emit-
tances of (1.22+0.13) um (horizontal) and (1.179 +
0.086) um (vertical) show only a slight increase dominated
by chromatic effects during capture and focus. These values
correspond to the average and rms deviations of all
simulated shots. Ultimately, this study demonstrates that
the energy compressor behaves as expected from theory,
improving the energy spread and stability by at least an
order of magnitude.

The real-world applicability of the energy compressor is
validated through a full start-to-end study including a
realistic LPA as well as relevant experimental jitters. The
LPA used for this study is based on downramp-assisted
ionization injection, a well-proven technique that can be
accurately simulated [36,37] and where the dominant
sources of jitter are well-known: laser focal position, energy,
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FIG. 3. (a) Initial energy spectrum of 300 Gaussian beams with
a 1% rms energy jitter and energy spread. The gray area
represents the energies filtered out by the slit in the chicane.
(b) Final energy spectrum after the APD.

and pulse duration [17,36]. It is designed as an evolution of
the LUX target [17,36,37] aimed at generating 500 MeV
beams with maximum stability to laser jitters. The density
profile, displayed in Fig. 4(a), contains a mixture of H, and
N, (1%) for electron injection, a 1.46 x 10'® cm™3 plateau
for acceleration, and a low-density tail (4 x 10'¢ cm™3) for
divergence minimization [69]. The laser driver is a 130 TW
Ti:Sa system with a total energy of 4.68 J, split between the
LPA (2.68 J) and the APD (2 J). Its longitudinal profile is
Gaussian with a FWHM duration of 34 fs, while its
transverse profile is modeled as a so-called flattened
Gaussian [74]. This consists of a sum of Laguerre-Gauss
modes that accurately describes flattop high-power lasers in
experiments [75]. The laser is subject to realistic jitters in
the focal plane position (100 gmrms), energy (0.5% rms)
and pulse duration (1% rms) [36,76]. Transverse and
longitudinal (i.e., timing) jitters between the LPA and
APD pulses of 5 yum [75] and 5 fs rms, respectively, are
also included at the APD entrance. The LPA driver is
focused to wy = 21 pum, with ¢y = 2.21, at z3,, = 4.68 mm
into the target. The data from 1000 simulations shows that
the resulting LPA beams have an energy of (494.3 £
4.9) MeV (i.e., 1% jitter), an rms (Gaussian fit) energy
spread of (2.134+0.67)%, a normalized emittance of
(2.48+£0.12) um (horizontal) and (0.749 + 0.062) ym
(vertical), a divergence of (0.762 + 0.026) mrad (horizon-
tal) and (0.350 £0.029) mrad (vertical), a charge of
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FIG. 4. Results from the start-to-end jitter study. (a) LPA
density profile; longitudinal phase space of the reference beam
(i.e., no jitters) at the exit of the (b) LPA and (c) APD; beam
energy spectra at the (d) LPA and (e) APD exits; (f) average
beam energy versus laser arrival time jitter (Af), including the
expected correlation and a linear fit to the data.
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(49.8 £5.6) pC, a FWHM duration of (8.96 +0.57) fs,
and a peak current of (5.63 4 0.87) kA. A realistic pointing
jitter of 0.5 mrad, consistent with experiments [36], is
externally added. To transport this beam, the focusing
gradient in the first and second plasma lenses is tuned to
1.6 KTm™' and 2.37 kTm™!, respectively. The APD is
placed 6.6 cm downstream of the second lens and has a
5.4 mm plateau with a 4.1 x 10'® cm™ density. The laser
driver is focused at the center of the APD with wy, =
27.5 ym and a, = 1.48.

The results of this jitter scan can be seen in Fig. 4. After
the APD, the beams have an average energy of (492.41 +
0.63) MeV (i.e., 0.13% jitter) and an rms (Gaussian fit)
energy spread of (0.134 & 0.047)% (total) and (0.071 +
0.012)% (slice). This is an order of magnitude improve-
ment over the initial values, and demonstrates a dechirping
strength of ~62 GeV mm~' m~!, a factor > 10 higher than
with rf technology [5]. The final energy variability is
dominated by the timing jitter between the two laser pulses.
This can be seen in Fig. 4(f), where the observed time-
energy correlation is in full agreement with Eq. (5). The
final beam emittances of (5.4 + 1.2) um (horizontal) and
(1.78 £ 0.85) um (vertical) experience an increase mostly
due to chromatic effects in the transport line and transverse
offsets of the laser at the APD entrance, which also lead to
an increased pointing jitter of 1.91 mrad (horizontal) and
1.84 mrad (vertical). The final beam charge of (34.8 +
5.6) pCis reduced due to the collimating slit in the chicane,
resulting in a peak current of (0.180 =+ 0.038) kA for a
bunch duration of (193 £ 46) fs. This study demonstrates
the feasibility and robustness of the proposed concept
under real-world conditions, paving the way toward the
experimental demonstration of reliable and high-quality
plasma accelerators. Side effects such as emittance growth
or charge loss can be greatly minimized by a lower initial
energy spread, and the final energy stability can be further
improved if the laser timing jitter is reduced.

In conclusion, the presented concept of bunch decom-
pression and active plasma dechirping effectively corrects
the energy spread and jitter of LPAs in a compact setup.
Large-scale realistic start-to-end simulations demonstrate
that the beam energy spread and energy jitter of state-of-
the-art LPAs can be reduced by an order of magnitude to
the per-mille and sub-per-mille range. This would enable
LPAs as compact beam sources for future storage rings or
free-electron lasers.
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