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Extreme value (EV) statistics of correlated systems are widely investigated in many fields, spanning the
spectrum from weather forecasting to earthquake prediction. Does the unavoidable discrete sampling of a
continuous correlated stochastic process change its EV distribution? We explore this question for correlated
random variables modeled via Langevin dynamics for a particle in a potential field. For potentials growing
at infinity faster than linearly and for long measurement times, we find that the EV distribution of the
discretely sampled process diverges from that of the full continuous dataset and converges to that of
independent and identically distributed random variables drawn from the process’s equilibrium measure.
However, for processes with sublinear potentials, the long-time limit is the EV statistics of the continuously
sampled data. We treat processes whose equilibrium measures belong to the three EV attractors: Gumbel,
Fréchet, andWeibull. Our Letter shows that the EV statistics can be extremely sensitive to the sampling rate
of the data.
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Introduction.—Extreme value (EV) statistics is a
venerable branch of probability theory, which has drawn
much interest over the years [1–5]. It finds diverse
application not only in physics [6–40], but in many other
fields of science as well [41–58]. Predicting when the next
EV event will occur and of what magnitude it will be is of
practical importance, as the extremes are typically the
scenarios we are looking forward to, or alternatively, must
watch out for [26,27,43,44,54]. Hence, a thorough under-
standing of EV statistics is crucial. The EV distribution
arising from independent and identically distributed (IID)
random variables (RV) has various limiting laws when the
sample size approaches infinity [59–63], in a similar way to
central limit theorems for sums of IID RVs [64]. More
precisely, the nature of the tail of the underlying distribu-
tion of the IID RVs determines the limiting form of the
scaled EV’s distribution to be either of Gumbel, Fréchet, or
Weibull form. However, it is clear that for many natural
processes, correlations are vital and omnipresent [34],
hence the assumption that one is dealing with IID RVs
is, in most cases, simply wrong [7,12,19,20,26,29,37,39].
Typically, one measures an extreme of a time series that

represents some quantity, be it for example a temperature
[55], the value of a currency [57], or the position of an
active biological entity [58]. In principle, the series is
continuous, and EV models of such continuously sampled
(CS) stochastic paths have attracted considerable attention.
However, in reality, for any experimental study the amount
of data collected and the sampling rate of the measurement
devices are both always finite. Thus, the approach that is
relevant to real-world applications is to first discretely
sample (DS) the path, and then find the maximum of the

sampled sequence of data. Is there a major difference
between these two sampling methods?
In this Letter, we answer this question in the context of

correlated trajectories of a Brownian particle in a force field,
modeled by Langevin dynamics. We start with one of the
most well-investigated stochastic processes, the Ornstein-
Uhlenbeck (OU) model (see also Refs. [30,65]). It describes
the motion of an overdamped particle in a harmonic field or,
equivalently, the velocity of a damped Brownian particle.
Naively, if the time between sampling events is shorter than
the relaxation time, then the former should not be expected
to play a major role, and we expect to get the CS EV
statistics. But, as we show here, for any finite sampling
interval this is wrong.
Our remarkable finding is a qualitative nonsmooth

transition from DS to CS in the statistics of extremes, which
we present first using theOUmodel. It exists for any positive
sampling interval when the overall measurement time is
increased, and is not related to a physical change of the
system. It strongly affects the mean and variance of the EV
distribution, and thus also the typical fluctuations and large
deviations of the EVs [38]. Nevertheless, for the OU process
bothDSandCSgive rise to aGumbel distribution for theEV,
in the limit of infinitely long observation time; see below.
We then extend our results to a wide class of Langevin

processes that lie in the Gumbel domain, unveiling a second
transition governed by the large-displacement behavior of
the force field controlling the dynamics. Finally, within this
Langevin approach, we briefly present in the Appendix
extensions to processes whose equilibrium distributions
(ED) belong to the other twoEV limits, Fréchet andWeibull.
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The OU model.—We start by considering the Langevin
equation for the OU model,

d
dt

xðtÞ ¼ −
1

τ
xðtÞ þ

ffiffiffiffiffiffiffi
2D

p
ηðtÞ; ð1Þ

where τ, D, and ηðtÞ are the relaxation time, the diffusion
coefficient, and standard Gaussian white noise, respec-
tively. The noise obeys hηðtÞηðt0Þi ¼ δðt − t0Þ and has zero
mean, where δð·Þ is Dirac’s delta function. The particle, at
position xðtÞ, is subject to a force which is derived from a
quadratic potential. We rescale all quantities in the equation
such that t and xðtÞ are measured in units of τ and

ffiffiffiffiffiffi
Dτ

p
,

respectively. We specialize to this OU path xðtÞ in the time
interval ½0; T�, and sample it stroboscopically every Δ units
of time; see Fig. 1. The outcome of this DS measurement is
the random sequence xn ≡ xðnΔÞ, where 0 ≤ n ≤ N and
NΔ ¼ T is the total measurement time. We focus on the
maximum of this set, denoted zDS, and compare its
properties to those of the previously studied case of
the maximum of xðtÞ in the interval ½0; T�, zCS ≡
max0≤t≤T ½xðtÞ� [34,66]. To compute this latter quantity,
one has to measure the whole continuous trajectory, and
hence we call it the CS model. Clearly, zDS ≤ zCS.
The binding force ensures that an ensemble of particles

will reach a steady state, the Boltzmann-Gibbs measure,
given by ϕðxÞ≡ expð−x2=2Þ= ffiffiffiffiffiffi

2π
p

. In the limit of large Δ
and T but fixed N, the sampling is of uncorrelated RVs all
drawn from the ED. Thus, if zDS < z then all theN sampled
variables are also smaller than z, and since they are IID RVs
drawn from the ED we find that limΔ→∞ProbðzDS<zÞ¼
½ΦðzÞ�N , with ΦðzÞ≡ R

z
−∞ dxϕðxÞ ¼ 1 − erfcðz= ffiffiffi

2
p Þ=2

and erfcð·Þ is the complementary error function. In this
limit, the nature of the EV statistics is only due to the
equilibrium properties of the system, and any dynamical
information, including correlation effects, is wiped out.
When N is large, the typical EVs are also large [38]; hence
we assume z ≫ 1, where ΦðzÞ ≃ 1 − z−1ϕðzÞ, and get

lim
Δ→∞

ProbðzDS < zÞ ∼ exp ½−Nz−1ϕðzÞ�: ð2Þ

To treat the DS EV case, we consider the positions xn at
the moments of sampling using a discrete stochastic map.
By integrating the Langevin equation, Eq. (1), one finds the
OU update formula, xnþ1 ¼ μxn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
ηn, where the

ηns are standard Gaussian IID deviates and μ≡ expð−ΔÞ
[67]. In the large-N limit, we find

ProbðzDS < zÞ ∼ AðzÞ exp
�
−N ln

�
1

Λ�ðzÞ
��

: ð3Þ

The amplitude AðzÞ approaches unity for large z and the
main focus here is the largest eigenvalue, Λ�ðzÞ. The latter
obeys the following integral equation, obtained from the
stochastic map [68],

Λ�ðzÞP�ðx;zÞ¼
Z

z

−∞

dx0P�ðx0;zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1−μ2Þ

p exp

�
−
ðx−μx0Þ2
2ð1−μ2Þ

�
; ð4Þ

where P�ðx; zÞ is the corresponding eigenfunction.
Evaluating the joint limit of Δ → 0 and N → ∞ with T
fixed and large [68], we obtain the Fokker-Planck descrip-
tion of the problem, limΔ→0ProbðzDS < zÞ ∼ exp½−Tλ�ðzÞ�,
i.e., the CS limit, with λ�ðzÞ≡ limΔ→0½1 − Λ�ðzÞ�=Δ. In
Ref. [34], it was shown that λ�ðzÞ is the smallest magnitude
solution of Dλ�ðzÞð−zÞ ¼ 0, D·ð·Þ being the parabolic
cylinder function, a result which we recover. For large z,
one has λ�ðzÞ ∼ zϕðzÞ [70], and the CS limit becomes
[34,66]

lim
Δ→0

ProbðzDS < zÞ ∼ exp ½−TzϕðzÞ�: ð5Þ

The Gaussian decay of the exponents in Eqs. (2) and (5)
means that both the IID and CS limits belong to the Gumbel
universality class. However, the large-z asymptotic behav-
ior of these two exponents differs by a diverging factor of
z2, making the corresponding EV distributions vastly
different. Surprisingly, for any finite Δ, the large-N limit
of the DS process’s EV distribution, Eq. (3), which is
dominated by the large-z asymptotics of the eigenvalue
Λ�ðzÞ, converges to the EV measure given by the ED IID
limit, both for the OU process along with a wide class of
similar processes, as we show below. Hence, the limit of
Δ → 0 is singular in the context of EV theory [71].
To begin analyzing the DS EV problem, we use a small-μ

(or equivalently, large-Δ) perturbation theory, expanding
Λ�ðzÞ ¼

P∞
n¼0 λnðzÞμn, and similarly for P�ðx; zÞ. Using

Eq. (4), we get that Λ�ðzÞ ≃ΦðzÞ þ μ½ϕðzÞ�2=ΦðzÞ to first
order in μ. For large-z this implies that

Λ�ðzÞ ≃ 1 − z−1ϕðzÞ þ μ½ϕðzÞ�2: ð6Þ

The second term is expected as it is the result obtained for
IID RVs that originate from the ED. A key observation is
that for large z, the third term is by far smaller than the

CS

CS

DS

FIG. 1. A piece of an OU trajectory. The path of a Brownian
particle in a confining harmonic force field, modeled via the OU
process (solid curve). This path’s maximum is zCS (red triangle),
while discretely sampling every Δ ¼ 1 unit of time yields the
sequence xn (blue circles), with a maximum of zDS (green
diamond).
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second one, even if μ is not too small, since ϕðzÞ ≪ 1. The
first-order correction with μ is thus exponentially small in z
with respect to the leading term. We continue the small-μ
expansion to order 10 [72] and find, similarly, that all the
terms up to μ10 are negligible in the large-z limit. This
behavior is also found in numerical calculations of the
eigenvalue Λ�ðzÞ [68], as exhibited in Fig. 2, showing that
for large values of z all the numerical data converge to a
unique curve which is Δ independent, namely the IID
curve. This accords with the result of Berman [71] for
stationary Gaussian sequences, that when z is large the EV
statistics will converge to that of IID RVs drawn from the
ED for any positive Δ.
To further elucidate this phenomenon, we need a differ-

ent strategy that exploits the large-z expansion of the
integral eigenvalue equation, i.e., Eq. (4). Expressing the

largest eigenvalue as Λ�ðzÞ≃1−ϕðzÞΛ1ðzÞþ½ϕðzÞ�2Λ2ðzÞ,
and similarly for P�ðx; zÞ, we obtain [68]

Λ�ðzÞ ≃ 1 − ϕðzÞerfcðz=
ffiffiffi
2

p Þ
2ϕðzÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Λ1ðzÞ

þ ½ϕðzÞ�2
X∞
n¼1

μn=n!
1 − μn

He2n−1ðzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Λ2ðzÞ

; ð7Þ

where Henð·Þ is the nth probabilists’ Hermite polynomial.
Further expanding Eq. (7) for large z, we find

Λ�ðzÞ ≃ 1 −
ϕðzÞ
z

þ
�
ϕðzÞ
z

�
2 ð1þ μÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ2
p exp

�
z2μ
1þ μ

	

≃ 1 −
ϕðzÞ
z

�
1 −

2e−Δz
2=4ffiffiffiffiffiffiffiffiffiffiffi

πΔz2
p

	
; ð8Þ

where the last expression is valid for small Δ [73].
Remarkably, the leading two terms are μ independent
and correspond to the result for IID variables originating
from the ED. However, for fixed z, when Δ becomes small,
or equivalently μ approaches unity, the last term diverges,
indicating the breakdown of the large-z perturbation theory
and the existence of a crossover regime to a CS behavior for
Δz2 ∼Oð1Þ. This is evidenced in Fig. 3, where one sees
that for small T ¼ ΔN, the distribution of zDS is close to the
CS prediction, whereas for large T it appears to converge to
the IID limit. This transition has however nothing to do
with a physical switch of the behavior of the system, and is
rather a purely statistical effect due to the finite sampling
rate. Thus, for any fixed Δ > 0, as T becomes large the IID
statistics and ED control the EV theory.

FIG. 2. The large-z convergence of Λ�ðzÞ. The scaled eigen-
value ½1 − Λ�ðzÞ�=ϕðzÞ for μ≡ expð−ΔÞ ¼ 0.25 (red circles),
μ ¼ 0.5 (blue triangles), and μ ¼ 0.75 (green diamonds), ob-
tained from numerical evaluations of the eigenvalue equa-
tion, Eq. (4), as well as from a tenth-order perturbative
expansion in μ (solid curves). Also shown is the exact result
for the IID case, μ ¼ 0, for which Λ�ðzÞ ¼ ΦðzÞ (dashed black
line). Notice that all three finite-μ curves merge for large z with
the IID line.

(a) (b) (c)

FIG. 3. The EV statistics of the DS OUmodel. The distribution of EVs for the DS OU process, with sampling rateΔ ¼ 0.1. For not too
large T, we see a behavior close to that of the CS approach (a). However, as we increase T, approximating the DS statistics by those of
CS becomes less accurate (b), and eventually approach the statistics predicted for N ¼ T=Δ IID RVs drawn from the ED (c). The IID
and DS curves (dashed blue and solid black) correspond to expf−N ln½1=ΛðzÞ�gwith ΛðzÞ ¼ ΦðzÞ and ΛðzÞ ¼ Λ�ðzÞ, respectively. The
CS curve (short-dashed red) corresponds to exp½−Tλ�ðzÞ�, where Dλ�ðzÞð−zÞ ¼ 0. Each histogram is made of 106 maxima with initial
conditions of x ¼ 0.
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A qualitative argument.—How are we to understand the
crossover scale of Δz2 ∼Oð1Þ? A simple explanation to
this result is as follows. Let us expand the recursion relation
of xn for smallΔ, xnþ1 − xn ≃ −Δxn þ

ffiffiffiffiffiffi
2Δ

p
ηn. We see that

there is a competition between two terms. For small Δ the
stochastic noise is dominant, and so a record-breaking large
xn is very liable to be followed by a yet larger value.
However, for sufficiently large xn, the deterministic term
which is proportional to xn dominates, so those maxima are
separated by large gaps in time. These two terms are
comparable precisely in the crossover regime we have
identified. Physically, the effect we find here is related to
the fact that extreme events of Langevin paths in a
confining field become larger as time progresses.
However, the bigger the true maximum is (in the CS
sense), the faster the relaxation from this extreme gets,
simply because the restoring force field gets enormously
large if the path wanders to an EV. This idea suggests that
our main result found for the OU process is of more general
validity. We explore this by considering the path of a
Brownian particle subjected to more general binding force
fields. As explained below, these results extend beyond the
Gumbel basin of attraction.
Other force fields in the Gumbel domain.—Let us consi-

der a potential of the form UðxÞ ¼ ð1=αÞð1þ x2Þα=2, with
α > 0 (see further details in the Supplemental Material
[68]). In Fig. 4, we plot the mean EV hzi versus T given
various values of α. For the OU process with α ¼ 2, we see
that the numerical values converge to the IID limit at large
times; see Fig. 4(a). This works also for α ¼ 2.5, since here
too the force grows with x, leading to a domination by the
deterministic force term at long times. However, this
argument is no longer valid for α ≤ 1, where the force
does not increase with x; see Figs. 4(b) and 4(c). For
example, when setting α ¼ 0.5, the stochastic term domi-
nates at large x, and the exact values (which are nicely
described by CS) diverge from the IID behavior; see
Fig. 4(c). When α ¼ 1, the force is asymptotically constant,
which is a special borderline case with all curves being
parallel; see Fig. 4(b). This case was also shown to be
critical for problems which do not involve DS; see Ref. [14]
in the context of crowding of near-extreme events, and
Ref. [74] where a freezing transition was discovered for the
long-time decay rates of first-passage probabilities.
The Fréchet and Weibull EV limits.—Thus far, we have

discussed processes with an asymptotic power-law poten-
tial. This means EDs of exponential type, so that their EV
limits belong to the Gumbel class. However, our observa-
tions hold for the other two EV attractors as well. For the
Fréchet class we observe a behavior similar to the Gumbel
case with α < 1. Namely, due to the force diminishing at
infinity, the DS EV distribution agrees with the CS
prediction. For the Weibull class we find that the DS EV
distribution converges toward the IID prediction, diverging
away from the CS limit. Key equations and supporting

figures of these results appear in the Appendix, while
derivations and additional extensions can be found in the
Supplemental Material [68]. We thus conjecture that any
process with a potential growing superlinearly, i.e., obeying
limx→∞ x=UðxÞ ¼ 0, will have its EV statistics controlled
by the ED IID behavior in the long-time limit.
Summary and conclusions.—We have demonstrated how

the difference between discrete and continuous sampling
affects the extreme value (EV) distribution of correlated
random variables (RV) generated from Langevin paths. For
the Ornstein-Uhlenbeck process, we found that there is a
crossover at large measurement times to the statistics of
independent and identically distributed RVs drawn from the

(a)

(b)

(c)

FIG. 4. The Gumbel class. The mean EV hzi of a DS process
xðtÞ, evolving according to Eq. (1) (D ¼ 1), but with a determin-
istic force of −U0ðxÞ, where UðxÞ ¼ ð1=αÞð1þ x2Þα=2. We used
(a) α ¼ 2 (blue triangles) and α ¼ 2.5 (red circles), (b) α ¼ 1
(green diamonds), and (c)α ¼ 0.5 (purple disks), corresponding to
the OU model and to increasing, constant, and decreasing-force
processes, respectively. Seen are numerical evaluations for these
four cases, where the sampling interval is Δ ¼ 0.1. Also depicted
are the ED IID (solid lines) and CS (dashed curves) predictions for
each value of α. (a) For α > 1, the DS values converge to the IID
description. (c) The opposite happens for α < 1, as this case has a
force that vanishes for large distances. (b) The borderline case is
α ¼ 1, where the DS, IID, and CS values do not seem to intersect.
Each mean is made of 104 maxima whose initial conditions are
x ¼ 0, obtained using the Euler-Maruyama method with an
underlying time increment of 0.01. A reflective boundary con-
dition at x ¼ 0 was used when α < 1.
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equilibrium distribution, for any nonzero sampling interval.
After providing an intuitive explanation for this phenome-
non, we showed it holds for a class of potential fields that
are strongly binding. We demonstrated that this is not true
for the complementary cases, where the EV distribution
diverges from that of independent and identically distrib-
uted RVs. Lastly, we showed that our findings apply also to
the other two classical limits of EVs, Fréchet and Weibull,
which were studied via two example cases.
The profound sensitivity of the EV theory of correlated

continuous processes to the method of sampling suggests
that similar effects will be present also in more general
models. Further, any changes encountered in the statistics
of EVs may be related to the sampling problem found here,
and not to a real change in the physical properties of the
system, as we explained. Exploring these issues for models
such as fractional Brownian motion, continuous time
random walks, processes with demographic or multiplica-
tive noise, and statistics of first-passage times of discretely
sampled processes remains an open challenge.

The support of the Israel Science Foundation via Grant
No. 1614/21 is acknowledged.

Appendix: The Fréchet and Weibull EV limits.—We first
consider a potential which grows logarithmically for
large displacements [75–77], UðxÞ ¼ ðβ=2Þ lnð1þ x2Þ
with β > 1. Here, the Boltzmann-Gibbs ED decays as a
power law; hence the IID limit belongs to the Fréchet class.
Studying the mode z0 of the EV distribution obtained from
this Langevin process, we find that

zIID0 ∼ N1=ðβ−1Þ; zCS0 ∼ T1=ðβþ1Þ: ðA1Þ

Namely, the IID and CS limits in Eq. (A1) display different
power-law decays (note that T ¼ NΔ). This is evidenced in
Fig. 5, where for large Ts the CS limit dominates the EV
distribution, whereas for small Ts the IID picture wins. The
potential grows at infinity slower than linearly, hence the
CS limit describes the EV distribution correctly at long
times. See the Supplemental Material [68] for the complete
derivation leading to Fig. 5.
Secondly, we consider a potential corresponding to a

particle confined to a finite interval, xðtÞ ∈ ½0; 1�,

UðxÞ ¼ ðγ − 1Þ ln
�

1

1 − x

	
: ðA2Þ

Note that γ ¼ 1, assuming reflective boundary conditions at
x ¼ 0 and x ¼ 1, corresponds to a particle freely diffusing
in a box. Since here the Boltzmann-Gibbs ED has a finite
upper support point, the IID limit belongs to the Weibull
class. As the particle’s movement is bounded, its maximum
value cannot exceed 1; hence it proves useful to study the
quantity 1 − hzi, i.e., the deviation of the mean EV from its
maximal possible value. Similarly to the Gumbel case with

α > 1, the CS prediction is entirely off for large measure-
ment times. In general, for the IID limit and any γ > 0, we
find the following power-law decay rate:

1 − hziIID ∼ N−1=γ: ðA3Þ
However, for the CS limit and γ > 2, we obtain a different
power law,

1 − hziCS ∼ T−1=ðγ−2Þ; ðA4Þ

while for 0 < γ < 2, the decay rate becomes exponential-
like. Specifically for a particle freely diffusing in a box,
where γ ¼ 1, we obtain

1 − hziCS ∼
8

π3T
exp

�
−
π2

4
T

	
: ðA5Þ

To illustrate these results, we first set γ ¼ 2.5 in Fig. 6.

Plotting the deviation of the mean EV from its maximal

(a)

(b)

FIG. 5. The Fréchet class. The EV mode z0 of a DS Langevin
process xðtÞ, which evolves in time according to Eq. (1) (D ¼ 1),
but with a deterministic force of −U0ðxÞ, where UðxÞ ¼
ðβ=2Þ lnð1þ x2Þ and β ¼ 2.5, for (a) Δ ¼ 20 and (b) Δ ¼ 5.
Seen are stochastic simulations of the Langevin equation (brown
disks), the IID limit (dashed blue line), and the CS limit (short-
dashed red line). The CS limit dominates the DS EV distribution
for large measurement times due to the force diminishing at
x → ∞, while for smaller Ts the IID limit prevails. Each mode
was calculated by maximizing a tenth-order polynomial fitted to a
probability density function constructed out of 105 EVs whose
initial conditions are x ¼ 0, obtained using the Euler-Maruyama
method with an underlying time increment of 0.01 and a
reflective boundary condition at x ¼ 0.
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possible value, 1 − hzi, versus the overall measurement
time, T, we see that even if one takes a small sampling time
ofΔ ¼ 10−3, the CS limit fails for large T, and the IID limit
takes control of the EVs, with the ED as an underlying
measure. For the other regime, we set γ ¼ 1, giving the
example of a particle freely diffusing in a box, as
mentioned; see Fig. 7. It is clear that here too the CS limit
fails for large T, while the IID limit works excellently. This
again marks a qualitative difference between DS with any
finite Δ to the CS limit of Δ ¼ 0, here for this example of
particles freely diffusing in a box. The complete derivation
leading to Figs. 6 and 7 can be found in the Supplemental
Material [68].
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