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As one of the central topics in quantum optics, collective spontaneous emission such as superradiance
has been realized in a variety of systems. This Letter proposes an innovative scheme to coherently control
collective emission rates via a self-interference mechanism in a nonlinear waveguide setting. The self-
interference is made possible by photon backward scattering incurred by quantum scatterers in a waveguide
working as quantum switches. Whether the interference is constructive or destructive is found to depend
strongly on the distance between the scatterers and the emitters. The interference between two propagation
pathways of the same photon leads to controllable superradiance and subradiance, with their collective
decay rates much enhanced or suppressed (also leading to hyperradiance or population trapping).
Furthermore, the self-interference mechanism is manifested by an abrupt change in the emission rates in
real time. An experimental setup based on superconducting transmission line resonators and transmon
qubits is further proposed to realize controllable collective emission rates.
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Introduction.—Waveguide quantum electrodynamics
has recently been a growing area in quantum optics with
important applications in quantum information processing
[1–5]. Different integrations of quantum emitters (QEs)
with nanophotonic structures have been achieved, such as
guided surface plasmons confined on a conducting nano-
wire with individual optical emitters [6,7], photonic nano-
wire coupled by embedded quantum dots [8,9], or
superconducting transmission line with superconducting
qubits [10–12]. These physical platforms make it possible
to let QEs interact with one-dimensional bosonic modes
with nontrivial dispersions [13–27]. Advances in designing
and probing light-matter interactions have also stimulated
the investigation of collective phenomena such as super-
radiance and subradiance [28–36], cavity antiresonance
spectroscopy [37], and nonequilibrium collective phase
transition [38,39].
As a typical collective emission, Dicke superradiance

has been demonstrated in systems of hot atoms [40,41],
cold atoms [42,43], trapped ions [44–46], superconducting
qubits [47,48], etc. Its counterpart with reduced emission
rate is termed subradiance. Transitions between super-
radiant and subradiant states have been realized in super-
conducting circuits by initially applying a phase gate on
each qubit [49]. Superradiance and subradiance are highly
relevant to quantum memory in connection with the writing
and reading of quantum information [50,51]. However, to
date continuously controllable collective emission rate
without using external driving fields [52–54] remains a
challenge for almost all QE systems.
In this Letter we reveal an unknown aspect of sponta-

neous emission in a nonlinear waveguide setting. We

consider quantum scatterers in addition to general quantum
emitters in the same waveguide. The emitted photon
propagating in the waveguide can be bounced back by
the scatterers. The backward scattered photon then inter-
feres with the other branch of the photon propagating in the
opposite direction. Such self-interference is exploited to
achieve continuous and extensive control of the sponta-
neous emission rate of QEs. Indeed, even the transition
from superradiance to subradiance can be readily achieved
if we control certain features of the quantum scatterers,
such as its resonance frequency and the QE-scatterer
distance. Specifically, the QE-scatterer distance is found
to be a crucial parameter to induce constructive or destruc-
tive interference. An experimental setup based on super-
conducting transmission line resonators and transmon
qubits is further proposed to realize continuously control-
lable collective emission rates.
Model.—Consider a system consisting of a one-dimen-

sional array of tunneling-coupled cavities which accom-
modate one assembly of QEs at position x ¼ x1 and a
second collection of two-level atoms at x2, respectively.
A schematic plot of this configuration is shown in Fig. 1.
Atoms at x2 play the role of quantum scatterers, through
which the spontaneous emission dynamics of QEs at x1 is
to be manipulated. Though playing two different roles,
these two collections of atoms will be treated with similar
notation, indexed by A and B, respectively, and assumed to
have excited states jeAi, jeBi and ground states jgAi, jgBi,
separated in energy by frequencies ΩA and ΩB (we set
ℏ ¼ 1 throughout). The tunneling-coupled photonic wave-
guide forms a lattice, modeled by the following tight-
binding Hamiltonian:
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Hph ¼
X

x

ωca
†
xax þ J

X

x

ða†xþ1ax þ a†xaxþ1Þ; ð1Þ

where a†x is the creation operator of the waveguide mode at
position x, and ωc is the resonance frequency of a single
cavity. For convenience, we assume the lattice constant to
be a ¼ 1 throughout. The total Hamiltonian describing the
system is then

H ¼ Hph þ
X

j

Ωj;AjeAj iheAj j þ
X

j

Ωj;BjeBj iheBj j

þ
X

j

ðVj;Aσ
þ
j;Aax1 þ Vj;Bσ

þ
j;Bax2 þ H:c:Þ; ð2Þ

where σþj;A and σþj;B are the creation operators for the jth
atom in each assembly and Vj;A and Vj;B are the respective
coupling strengths. For the case of only one QE with weak
coupling (V ≪ J), the QE decays with the radiation rate
Γ ¼ V2=J if the emitter is near resonance with the
frequency of a single cavity [55]. In the single excitation
subspace, the spectrum of Eq. (2) comprises discrete
localized bound states and a continuum of delocalized
dressed states with energy ωk ¼ ωc þ 2J cosðkÞ versus the
mode wave vector k, thus forming a scattering band with ωc
being the band central frequency with bandwidth 4J
(J > 0). The said bound states result in the known frac-
tional trapping of an emitted photon and nonexponential
dynamics of the spontaneous emission [56,57]. Note also
that the peak photon group velocity is vmg ¼ 2J reached by
the wave vector km ¼ �π=2.
General theoretical considerations.—Let us now assume

that the QEs and the quantum scatterers are separated by a
distance Δx≡ jx2 − x1j, which is less than half of the
coherence length∼vmg =Γ of a spontaneously emitted photon.
The initial state of the whole system is that one of the QEs is
excited, or two of the QEs are in the superpositions of their
excited states, with the photon field in vacuum. This hence
places the whole wave function in the single-excitation
invariant subspace. The time-evolving state at time t can be
written as

jψðtÞi ¼
�X

i

XMi

j¼1

Ci
jðtÞσþj;i þ

X

k

CkðtÞa†k
�
jg; vaci; ð3Þ

where i ¼ A, B, and a†k ¼ ð1= ffiffiffiffi
N

p ÞPx e
ikxa†x. Mi is the

number of the QEs or of the scatterers. Ci
j is the excitation

amplitude for the jth atom in each collection of atoms,Ck is
the amplitude of the waveguide mode with momentum k.
Without loss of generality, we assume that only QEs with
indices jn may be excited at time zero, i.e., CA

jn
ð0Þ ≠ 0,

CA
j ð0Þ ¼ 0 (j ≠ jn), and CB

j ð0Þ ¼ Ckð0Þ ¼ 0. If initially at
most two excited QEs indexed by j1 and j2 are involved in
the initial excitation, then exact results about their ensuing
time dependence can be obtained [58]:

CA
j1
ðtÞ ¼ L1ðsÞCA

j1
ð0Þ þ L2ðsÞCA

j2
ð0Þ

GðsÞ estjs¼−iΩA

þ
X

m

iL2ðsÞ½CA
j1
ð0Þ þ CA

j2
ð0Þ�

ðis −ΩAÞ½GðsÞ�0
estjs¼xm

−
X

α¼�

Z
1

−1

½Qα
1C

A
j1
ð0Þ þQα

2C
A
j2
ð0Þ�ei2Jyt

2πiαðyþ ΩAÞ½Qα
1 −Qα

2�
dy; ð4Þ

where L1;2ðsÞ and GðsÞ strongly depend on the separation
parameter Δx, Q�

1;2 are explicit functions of the integration
variable y, and xm is the roots of the equationGðsÞ ¼ 0 [58].
The imaginary part of each xm corresponds to the inverse of
the system’s eigenenergies of the localized photon-QE
dressed states. In fact, the second term on the right-hand
side of Eq. (4) originates from the system’s photon-QE
bound states with nonzero field amplitudes. CA

j2
ðtÞ can be

obtained by exchanging the positions ofCA
j1
ð0Þ andCA

j2
ð0Þ in

Eq. (4). In obtaining the analytical expressions above, it has
been assumed that each collection of atoms (namely, among
the QEs, or among the scatterers) is identical and thus Ωj;i

andVj;i are independent of the atom index j, denoted byΩA,
ΩB, VA, and VB.
Cases with one single emitter.—To gain some important

insights first, we consider a single QE indexed by j1
coupled with multiple scatterers through the waveguide,
with the initial state jψð0Þi ¼ σþA jg; vaci. The time evolu-
tion of the excited state population PeðtÞ ¼ jCA

j1
ðtÞj2 is

shown in Fig. 2(a) versus the detuning parameter ΔB ¼
ΩB − ωc depicting the scatterers, with the QE-scatterer
separation Δx ¼ 7 (i.e., 7 lattice constants) as an example.
At early times, the emission dynamics matches well with
that of a normal decay process PeðtÞ ≈ e−Γ1t with Γ1 ¼
V2
A=J (assuming VA ≪ J), without feeling the presence of

the scatterers. Later the scatterers make a dramatic differ-
ence during the spontaneous emission process. In particu-
lar, as the main reason to introduce the scatterers in the first
place, the scatterers as two-level systems can extensively
control the coherent transport of a single photon in the
waveguide, including a complete reflection of the emitted
photon [5]. Hence, once part or even the whole of the
propagating photon toward the scatterers comes back to
the decaying QE, it will interfere with the other branch of

FIG. 1. Schematic of a waveguide setup. A one-dimensional
array of resonators with nearest-neighbor tunneling J hosts an
assembly of quantum emitters at x1 and a second collection of
two-level atoms as quantum scatterers at x2.
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the photon propagating along the other direction.
Supporting this physical picture, Fig. 2(a) depicts an abrupt
change of the radiation rate once t reaches t0 ≈ 2Δx=ð2JÞ,
yielding a cascade of stimulated emission. In terms of the
real-time dynamics, we are witnessing an intriguing sce-
nario that an emitted photon, when being bounced back,
can further boost the emission process that has not been
completed yet. The degree of enhancement is continuously
controlled by the frequency of the scatterers, as evidenced
by the shown strong dependence of the emission rates
versus the detuning parameter ΔB.
Continuing our investigations of the cases with Δx ¼

2nþ 1 (n being an integer), let us further assume that
the quantum scatterers are near resonance with each single
cavity with small Δx, plus the conditions VA ≪ 2J
and

ffiffiffiffiffiffiffi
MB

p
VB ∼ 2J. The enhanced emission rate under

these conditions is found to be PeðtÞ ≈ ½MBV2
B=ð4J2Þ −

α1=2�2e−2Jα1t=β1 with α1 ¼ V2
A=ðJ2 − ΔxV2

A=2Þ and β1
is a time-independent quantity [58]. As can be seen in
Fig. 2(a), our approximate theoretical results agree well
with the exact results obtained from Eq. (4). For Δx being
small enough, the radiance rate is 2 times the normal decay
rate. Although there is only one QE here, the emission rate
is much enhanced and even beyond two-QE Dicke super-
radiance. The physical understanding is the following: The
QE interferes with itself via a delayed photon; thus it can
effectively realize collective interference and hence achieve
superradiance.
Next we consider cases with Δx ¼ 2n. A few computa-

tional examples with Δx ¼ 8 are shown in Fig. 2(b), where
suppressed emission rates are clearly observed. As the
frequency of the scatterers is tuned from ωc to the values far
away from the photon band, the suppression becomes weak
and ultimately the emission comes back to the normal
decay. It is curious to qualitatively understand why super-
radiance and subradiance are observed for Δ ¼ 2nþ 1
and Δ ¼ 2n in Figs. 2(a) and 2(b), respectively. If Δx ¼
2nþ 1, the phase difference incurred by the round travel of
the bounced photon can be estimated as jkmjð2ΔxÞ ¼
ð2nþ 1Þπ, if considering the main wave component around

km ¼ �π=2 with the largest group velocity. Also account-
ing for the π shift associated with a complete photon
reflection, the overall phase difference between the
bounced photon and the original photon is thus 2nπ,
yielding constructive interference and hence enhanced
emission. By contrast, if Δx ¼ 2n is chosen, then the
overall phase difference between the two interfering path-
ways is ð2nþ 1Þπ, thus producing destructive interference
and leading to suppression of the emission and thus
subradiance. Confirming this understanding, in Fig. 3(a),
we further show how the emission rates for weak coupling
VB are changed over a wide range if the QE-scatterer
distance Δx is adjusted.
Our results above have clearly indicated the important

role of the backward scattering in the self-interference
mechanism. It is hence useful to examine some details of
the scattering process. When the radiation field reaches the
scatterers, part of the field is reflected with the reflection
amplitude rk given by rk ¼ MBV2

B½i2Jj sinðkÞjðωk −ΩBÞ −
MBV2

B�−1 [58]. The effect of MB scatterers is equivalent to
that of one scatterer by rescaling VB with

ffiffiffiffiffiffiffi
MB

p
times.

Around the resonance, the reflection spectrum yields the
so-called Breit-Wigner line shape with the spectrum width
given by MBV2

B=jJ sinðk0Þj, where k0 is determined by the
relation 4J2 sin2ðkÞðωk −ΩBÞ2 ¼ M2

BV
4
B [5]. In particular,

if the photon energy ωk is under resonance with the two-
level scatterers, namely, ωk ¼ ΩB, one then obtains com-
plete reflection with rk ¼ −1 (hence the above-mentioned
π phase shift). Under the parameter setting ωc ¼ ΩB, the

FIG. 2. (a) Excited state population PeðtÞ versus detuning ΔB
forΔx ¼ 7. (b) Excited state population PeðtÞ versus detuningΔB
for Δx ¼ 8. The parameters are VA=ð2JÞ ¼ 0.08, VB=ð2JÞ ¼
1.8, and ΔA=ð2JÞ ¼ 0, the number of emitters isMA ¼ 1 and that
of scatterers is MB ¼ 2. In both (a) and (b) the vertical dashed
lines indicate the time of arrival of a reflected photon.

FIG. 3. (a) Excited state population PeðtÞ versus Δx, with
VA=ð2JÞ ¼ 0.09, VB=ð2JÞ ¼ 0.07, ΔA=ð2JÞ ¼ 0, ΔB=ð2JÞ ¼ 0,
MA ¼ 1, and MB ¼ 2. (b) Reflection coefficient R ¼ jrkj2 and
transmission coefficient T ¼ j1þ rkj2 as a function of momen-
tum k. Parameters are ΔB=ð

ffiffiffiffiffiffiffi
MB

p
VBÞ ¼ 0, J=ð ffiffiffiffiffiffiffi

MB
p

VBÞ ¼ 1.13.
(c) Excited state population 2jC2ðtÞj2, with ΔA=ð2JÞ ¼ 0,
ΔB=ð2JÞ ¼ 0, VA=ð2JÞ ¼ 0.08, VB=ð2JÞ ¼ 1.27, MA ¼ 2, and
MB ¼ 2. (d) Excited state population 5jC5ðtÞj2, with
ΔA=ð2JÞ ¼ 0, ΔB=ð2JÞ ¼ 0, VA=ð2JÞ ¼ 0.04, VB=ð2JÞ ¼ 1.0,
MA ¼ 5, andMB ¼ 2. Different vertical dashed lines indicate the
different times of arrival of a reflected photon.

PHYSICAL REVIEW LETTERS 129, 093602 (2022)

093602-3



resonance scattering condition ωk ¼ ωc þ 2J cosðkÞ ¼ ΩB
occurs for k ¼ π=2. From the expression of rk, it is also
seen that if k ¼ 0 or k ¼ π, complete reflection happens
also. However, this is irrelevant to our self-interference
mechanism because such components have a vanishing
group velocity in the waveguide. In Fig. 3(b), we show the
reflection and transmission spectra versus momentum k.
Cases with two or more emitters.—We now examine

how collective emission rates with two QEs can be
manipulated by exploiting self-interference. The two emit-
ters are prepared in typical single-photon entangled states
jψ�i ¼ ð1= ffiffiffi

2
p Þðσþj1;A � σþj2;AÞjg; vaci. For jψ−i, the decay

of QEs is completely suppressed since it is a dark state that
cannot emit a photon. Thus we focus on the emission
dynamics emanating from jψþi. When VB ¼ 0 and the
frequencies of QEs lie outside the scattering band with
jΔA � 2Jj ≫ VA, the evolution of jψþi is dominated by a
trapping regime due to the presence of bound states [56].
For the case VA ≪ 2J, the decay of the amplitudesCA

j1
ðtÞ ¼

CA
j2
ðtÞ≡ C2ðtÞ is basically exponential, with a very slowly

changing radiation rate as ΩA is tuned from ωc � J to ωc.
This is what one expects from the Wigner-Weisskopf and
Markovian perturbative theories, which predict jC2ðtÞj2≈
ð1=2Þe−ΓsðΔAÞt, with a decay rate ΓsðΔAÞ ¼ 4πV2

ADðΔAÞ,
where DðΔAÞ is the density of states for the photon
Hamiltonian Hph. DðΔAÞ reaches its extremum under the
resonance condition ΔA ¼ 0 and Γsð0Þ≡ Γs ¼ 2V2

A=J,
which is twice the normal decay rate shown in Fig. 2.
Indeed, this is what the standard superradiance theory
predicts.
Consider now what happens if the excitation frequency

ΩA of QEs is around the middle of the band with jΔAj ≪ 2J
in the presence of scatterers. The frequency ΩB of the
scatterers controls the position of transmission valley of the
radiated photon while MB and VB determine the valley
width. Like the case of one QE, before t reaches t0, jC2ðtÞj2
behaves as a superradiant state without sensing the scatter-
ers. Beyond t0, the superradiance rate is found to be much
enhanced ifΔx ¼ 2nþ 1 andmuch suppressed ifΔx ¼ 2n.
Representative results are shown in Fig. 3(c). It is seen that
the self-interference mechanism works effectively in the
case of superradiance. In particular, the enhanced super-
radiance by constructive self-interference may be termed
hyperradiance, a terminology also used previously but due
to different physics [71]. Under the conditionsVA ≪ 2J andffiffiffiffiffiffiffi
MB

p
VB ∼ 2J, we can make reasonable approximations

using our general theoretical expressions and find the
following hyperradiance dynamics with small Δx [58]:

C2ðtÞ ≈
MBV2

B − JΓhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðχ2 − 16MBV2

AV
2
BÞ

p e−ðΓh=2Þt: ð5Þ

Here the radiance rate Γh ¼ 4JV2
A=ðJ2 − ΔxV2

AÞ with
χ ¼ MBV2

B − ΔxMBV2
AV

2
B=J

2. The dotted line shown in

Fig. 3(c) is obtained from Eq. (5), in excellent agreement
with exact results obtained directly from Eq. (4). Under the
limit Δx being small enough, Γh is found to be just 2 times
the superradiance rate Γh ¼ 2Γs. On the other hand, Eq. (5)
indicates that Γh becomes large as Δx increases. As such,
tuning Δx allows us to further boost hyperradiance rates.
Finally, we investigate how the self-interference mecha-

nism works when there are multiple QEs. In this case, we
rely fully on computational studies since it becomes
tedious to find analytical results with more than two
QEs being initially excited. To investigate if the above
hyperradiance dynamics can be extended to cases with
multiple QEs, we consider the following initial amplitudes:
CA
j1
ð0Þ ¼ � � � ¼ CA

jMA
ð0Þ ¼ 1=

ffiffiffiffiffiffiffi
MA

p
. Figure 3(d) depicts

the results with MA ¼ 5 QEs for different values of Δx.
In the absence of scatterers, under the conditionffiffiffiffiffiffiffi
MA

p
VA ≪ 2J, the amplitudes CA

j1
ðtÞ ¼ � � � ¼ CA

jMA
ðtÞ≡

CMA
ðtÞ can be approximately described by jCMA

ðtÞj2 ≈
ð1=MAÞe−Γst with Γs ¼ MAV2

A=J, which is nothing but the
Dicke superradiance.
However, for cases with Δx ¼ 2nþ 1, Fig. 3(d) shows

that the self-interference mechanism further boosts the
collective emission rates by a factor of 2 for relatively
small Δx. Furthermore, as Δx increases, the emission rate
continues to be enhanced and hence surpasses 2Γs. This
echoes with our observation in the case of two emitters. To
understand this intriguing trend due to increasing Δx, we
first note that the wave vectors of the photon that will be
backward scattered are spread around k ¼ π=2 (in the
direction toward the scatterers), but only the component
with precisely k ¼ π=2 of the largest group velocity can
optimally induce the constructive self-interference. If Δx
increases, the potential phase dispersion among these
components along the propagation pathway increases.
This imposes a more strict selection on the wave compo-
nents that can contribute to the self-interference. These
selected wave components also tend to induce the self-
interference more synchronously.
For cases with Δx ¼ 2n, it is clearly observed in

Fig. 3(d) that the emission rates are much suppressed
due to the destructive self-interference. For suppressed
subradiance, the asymptotic values of the excited state
population is finite at sufficiently long time. Indeed, under
ΔB ¼ 0, the emitted photon is first bounced back by the
scatterers. Once the scattered photon meets the QEs,
destructive self-interference suppresses the collective emis-
sion and as such the QEs tend to reflect the emitted photon
as well, thus also dynamically trapping the photon between
the QEs and the scatterers. These results and insights
indicate the role of bound states in fully explaining the
population trapping on the excited state.
Discussion and conclusions.—In a one-dimensional

nonlinear waveguide setting, we have shown that the
self-interference incurred by a backward scattered photon
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originally emitted from quantum emitters can dramatically
change the emission rate. This self-interference mechanism
then leads to extensive control of the collective emission
dynamics, ranging from hyperradiance to strongly sup-
pressed subradiance. The theory and the physics commu-
nicated in this Letter are rather general. Indeed, the
considered quantum emitters can be of different types,
including both natural and artificial ones.
It might not be straightforward to tune the separation

between the emitters and the scatterers if they are already
grown in a nanophotonic structure. We propose to install
several different groups of quantum scatterers at different
positions in the waveguide. When the transition frequencies
of the scatterers are tuned to be outside the band and far
away from the resonance frequency of a single cavity, this
group of scatterers can be considered to be turned off and
hence irrelevant to our self-interference mechanism. For
this reason, one can effectively realize the position tuning
of the scatterers by adjusting their resonance frequencies.
The use of coupled superconducting resonators with

transmon qubits is a promising route for experimental
realization of this Letter [58]. By tuning the external
magnetic flux intersecting the loop formed by the
SQUID [62], the frequencies of transmon qubits can be
tuned in the range of 1 to 10 GHz [1,63]. The high-quality
superconducting resonators have frequencies between 5
and 15 GHz [64], thus making the resonator-qubit reso-
nance condition possible. Various chains of coupled super-
conducting resonators have also been realized and the
coupling strength J=ð2πÞ has the range from 20 to
730 MHz [65–70]. The qubit-resonator coupling strength
is in the range of VA=ð2πÞ, VB=ð2πÞ ¼ 5–300 MHz [2,63],
sufficient to yield the range of VA=ð2JÞ and VB=ð2JÞ
considered in this Letter. Clearly then, the self-interference
mechanism uncovered here is within reach of existing
experimental capabilities.
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