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We reveal a wealth of nonlinear and recoil effects in the interaction between individual low-energy
electrons (≲100 eV) and samples comprising a discrete number of states. Adopting a quantum theoretical
description of combined free-electron and two-level systems, we find a maximum achievable excitation
probability of 100%, which requires specific conditions relating to the coupling strength and the transition
symmetry, as we illustrate through calculations for dipolar and quadrupolar modes. Strong recoil effects are
observed when the kinetic energy of the probe lies close to the transition threshold, although the associated
probability remains independent of the electron wave function even when fully accounting for nonlinear
interactions with arbitrarily complex multilevel samples. Our work reveals the potential of free electrons to
control localized excitations and delineates the boundaries of such control.
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Free-electron beams (e-beams) allow us to image
material nanostructures and their excitations with an
unsurpassed combination of space-energy resolution in
the subangstrom-meV domain thanks to a sustained series
of advances in electron microscope instrumentation over
the past decades [1–9]. In particular, electron energy-loss
spectroscopy (EELS) is widely used to identify localized
excitations and map their spatial distributions with atomic
precision [3,6,9–16], as exemplified by recent studies of
photon confinement in optical cavities [17–19], atomic
vibrations in thin layers [6,9,15] and molecules [7,20,21],
and collective excitations such as phonon polaritons
[3,4,22,23] and plasmons [8,24–27].
At e-beam energies > 30 keV, typically employed in

transmission electron microscopes to perform EELS analy-
ses, the per-electron excitation probability of each individ-
ual mode in the specimen lies several orders of magnitude
below unity. While such weak interaction is beneficial to
grant us clean access into the nanoscale optical response
over a wide spectral range (10−3–103 eV), a low excitation
probability also implies that we operate in the linear regime
(i.e., the e-beam does not drive nonlinear dynamics, such as
the creation of multiple excitations by a single electron).
This situation changes when resorting to less energetic
probes like those available in low-energy electron micro-
scopes [28,29], as well as for ions and positrons used in the
past to study elastic and inelastic scattering in atomic gases
[30–39]. Indeed, individual ≲100 eV electrons are pre-
dicted to generate multiple excitations of a single optical
mode by appropriately adjusting the beam energy [40],
while the onset of anharmonic response in this regime is
expected to produce mode saturation and spectral shifts
[41]. In a different approach, femtosecond resolution is
currently achieved in ultrafast electron microscopy by

synchronizing laser and electron pulses in their arrival at
the sampled structure [17,18,42–46], a method that poten-
tially enables the determination of nonlinear response
functions with nanoscale resolution [47].
Many of the aforementioned studies focus on bosonic

excitations (e.g., phonons [3,4,22,23] and plasmons [8,24–
27]), which exhibit the characteristic linear response of
harmonic oscillators, unless strong external fields are
introduced to drive them beyond the parabolic potential
region. In the opposite extreme, two- and few-level
(fermionic) systems display a paradigmatic nonlinear
behavior, whereby a given excitation can block subsequent
ones. As an example, the discreteness of energy levels in
nanographenes permeates their optical response and ena-
bles nonlinear interactions at the single-free-electron level
[41]. Nevertheless, fermionic excitations in systems such as
atoms, molecules, and defect states in solids possess a weak
transition strength that is essentially limited by the f-sum
rule [48,49] and, therefore, demands the use of low-energy
electrons to yield measurable inelastic scattering signals.
Nonlinear effects open fundamental questions, such as

whether an individual electron can produce a given
excitation with 100% probability, as well as the role of
the electron wave function in determining that probability.
In addition, we expect different behavior between excita-
tions of bosonic and fermionic character in the high-
coupling regime. Because the probe energies required to
reach a sizable interaction strength are likely comparable to
the transition energies, recoil effects (i.e., corrections to the
energy transfer beyond a linear dependence in the momen-
tum transfer) are also anticipated to play an important role.
These are relevant problems of the yet poorly explored
terrain of nonlinear and recoil phenomena taking place
during the interaction of free electrons with localized
excitations.
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In this Letter, we show that a free electron can excite a
two-level system with 100% probability, provided the
transition symmetry and interaction strength meet specific
conditions. Based on a quantum description of free elec-
trons and localized excitations that rigorously incorporates
nonlinear and recoil effects, we show that the excitation
probability is independent of the electron wave function
profile. Our calculations for bosonic and fermionic systems
also demonstrate that recoil effects are irrelevant unless the
electron energy is only a few times larger than the transition
energy. Besides their fundamental interest, our results
suggest a way to control localized excitations by means
of free electrons, while establishing universal rules for the
maximum achievable probability depending on the sym-
metry of the excitation and the electron-sample coupling
strength, which could be beneficial for several applications
such as quantum tomography [51].
Nonperturbative excitation probability including recoil.—

We consider a collimated e-beam focused down to a small
lateral size (e.g., ∼1 nm for 100 eV electrons and a
numerical aperture ∼0.1 in the electron optics) at the region
of interaction with the sampled structure, such that we can
ignore its dynamics in a plane perpendicular to the beam
direction z. We further assume a nonlossy specimen [i.e.,
characterized by excitations of large lifetime compared with
the interaction time (< 2 fs for 100 eVelectrons and a 10 nm
sample)] comprising a discrete set of states jji of energies
ℏωj and initially prepared in the ground state j0i. The
Hamiltonian of the combined electron-sample system can be
written as

Ĥ ¼ ℏ
Z

dqεqjqihqj þ ℏ
X
j

ωjjjihjj

þ ℏ
Z

dq
Z

dq0
X
jj0

Gqj;q0j0 jqjihq0j0j;

where the electron is represented by orthonormal momen-
tum states jqi of energies ℏεq, whereas Gqj;q0j0 are electron-
sample coupling coefficients. We note that the electron
momentum component ℏq parallel to the e-beam can take
both positive and negative values corresponding to forward
and backward motion, respectively. Expanding the wave
function of the combined system as

jΨðtÞi ¼
Z

dq
X
j

e−iðεqþωjÞtαqjðtÞjqji;

inserting it into the Schrödinder equation ĤjΨðtÞi ¼
iℏj _ΨðtÞi, and adopting the initial conditions αqjð−∞Þ ¼
α0qδj 0 [i.e., with the specimen in the ground state j ¼ 0

and an incident electron wave function ψ0ðz; tÞ ∝R
dqα0qeiðqz−εqtÞ], we find the postinteraction solution [see

Supplemental Material (SM) [52] ],

αqjð∞Þ ¼ α0qδj 0 − 2πi
Mqq̃j;j

vq̃j
α0q̃j ; ð1Þ

where the coefficientsMqq0;j are independent of the incident
electron state and satisfy the self-consistent relation

Mqq0;j ¼ Gqj;q00 −
Z

dq00
X
j0

Gqj;q00j0Mq00q0;j0

εq00q0 þ ωj00 − i0þ
ð2Þ

(having the form of the Lippmann-Schwinger equation [53])
with εqq0 ¼ εq − εq0 ,ωjj 0 ¼ ωj − ωj 0 , and 0þ representing a
positive infinitesimal. Here, vq ¼ dεq=dq is the group
velocity of the q electron component, while q̃j represents
the incident electron wave vector transitioning to q after the
sample is excited from 0 to j. More precisely, q̃j is impli-
citly defined by εq̃j ¼ εq þ ωj0 with q̃j > 0 (i.e., α0q̃j only
contains forward propagating components).
We are interested in the probability Pj for a sampled

system initially prepared in its ground state j0i to be left in
state jji after the interaction has taken place. We thus write
Pj ¼

R
dqjαqjð∞Þj2, which upon insertion of Eq. (1)

leads to a decomposition of the probability in incident-
momentum components according to (see SM [52])

Pj ¼
Z

∞

qjmin

dqjα0qj2Pq;j; ð3Þ

where

Pq;j ¼
4π2

vqjvq
ðjMqj q;jj2 þ jM−qj q;jj2Þ ð4Þ

for excited states j ≠ 0. Here, the final electron wave vector
qj > 0 is defined through εqj ¼ εq − ωj0, and a minimum

incident wave vector qjmin is imposed by the threshold
excitation condition εqjmin

¼ ωj0. The first and second terms

in Eq. (4) correspond to the contributions of forward and
backward electron scattering (i.e., final wave vectors qj and
−qj, respectively).
The result in Eq. (3) reveals a trivial role of the incident

electron wave function (i.e., not on the wave shape, but
only on the incident electron spectrum): each initial wave
vector component contributes to the excitation probability
in proportion to jα0qj2 [see Eq. (3)], with no dependence on
the phase of α0q [i.e., on the profile of the incident wave
function ψ0ðz; tÞ]. We remark that this conclusion is
derived from a nonperturbative formalism that rigorously
accounts for nonlinear and recoil effects.
Because the energy spread of the incident beam plays a

trivial role, we limit our discussion to monochromatic
electrons of energy ℏεq0 with jα0qj2 ¼ δðq − q0Þ, so that the
excitation probability reduces to Pj ¼ Pq0;j, subject to the

condition q0 > qjmin. In addition, we focus on two-level
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systems, although the present formalism can be readily
applied to multilevel configurations.We thus concentrate on
the excitation probability P1 and also consider the linear
probabilityPlin

1 for reference, obtained from Eqs. (2) and (4)
by neglecting the integral term in the former (see SM [52]).
Pointlike interaction limit.—As a first tutorial step, we

obtain a closed-form solution when the interaction is
localized to just one point, so that the coupling coefficients
Gqj;q0j0 are independent of q and q0. Then, the excitation
probability reduces to (see SM [52])

P1 ¼
Plin
1

ð1þ Plin
1 =2Þ2 ;

which presents a single maximum P1 ¼ 1=2 as a function
of the linear probability at Plin

1 ¼ 2, as shown in Fig. 1. We
include backscattering in the linear probability only for this
case. This result already reveals that maximum excitation is
only achieved for a very specific value of the coupling
coefficient or, alternatively, a concrete value of Plin

1 .
Interestingly, the presence of two inelastic channels (for-
ward and backward scattering) limits the maximum prob-
ability to 50%. Indeed, if we disregard backscattering,
which should be reasonable for energetic electrons, a
similar analysis leads to (see SM [52])

P1 ¼
Plin
1

ð1þ Plin
1 =4Þ2 ;

whose maximum value is now P1 ¼ 1, obtained at Plin
1 ¼ 4.

For comparison, we show the P1 ¼ Plin
1 line corresponding

to a bosonic mode, and obviously, all of these results are in
mutual agreement in the Plin

1 ≪ 1 limit. Incidentally, the
average population of the excited state in a two-level
system interacting with many multiple uncorrelated elec-
trons is 1=2 [16].
Nonlinear e-beam excitation without recoil.—As we

show below, recoil effects can be neglected if the electron
energy exceeds several times the transition energy. We can
then linearize the electron energy difference as εqq0≈
ðq − q0Þv, where v is the electron velocity. Considering
a small sampled system, whose interaction with low-energy
electrons can be described through the Coulomb potential,
we find the associated coupling coefficients to only depend
on the wave vector difference q − q0 and take the form
Gqj;0j0 ∝ ðsgnfqgÞσjqjlKmðjqjReÞ, where Re is the beam-
sample distance, ðl; mÞ are the angular momentum numbers
associated with the excitation symmetry, σ takes values of 0
or 1, and a constant of proportionality depending on the
details of the system is taken to be absorbed in Plin

1 . In
particular, we consider excitations of dipolar [px and pz,
corresponding to ðl; m; σÞ ¼ ð1; 1; 0Þ and (1,0,1), respec-
tively] and quadrupolar [dz2 , dxz, and dx2−y2 , corresponding
to (2,0,0), (2,1,1), and (2,2,0)] character, with a geometrical
configuration as shown in the inset of Fig. 2(a) [see SM
[52] for details and Fig. 2(b) for the associated momentum-
space coupling coefficients]. We remark that, although we
use an orbital notation for the excitation symmetry, this
description is not restricted to atomic transitions and can be
applied to plasmons and other types of localized polaritons
having those symmetries, as well as to optically bright
excitons and defect states (e.g., in 2D materials [58]).
Under these conditions, the wave function of the system

admits the form (see SM [52])

hzjΨðtÞi ¼ ψ0ðz; tÞ
X
j

fjðzÞe−iωj0ðz=v−tÞe−iωjtjji;

where the space-dependent functions fjðzÞ evolve as

dfjðzÞ
dz

¼ −
i
v

X
j0
Gjj0 ðzÞeiωjj0 z=vfj0 ðzÞ; ð5Þ

and we introduce real-space coupling coefficients
Gjj 0 ðzÞ ¼

R
dqGqj;0j 0eiqz [see Fig. 2(a)]. Finally, the exci-

tation probability is simply given by Pj ¼ jfjð∞Þj2, while
the linear limit reduces to Plin

j ¼ ð4π2=v2ÞjG0j;ωj0=v;0j2 for
j ≠ 0 (see SM [52]).
We numerically integrate Eq. (5) for two-level systems

with the excitation symmetries noted above to obtain the
universal plots of P1 presented in Figs. 2(e)–2(i) as a
function of the dimensionless parameters ω10Re=v and Plin

1 .
Remarkably, we find that P1 reaches a single maximum of
100% at a specific ðω10Re=v; Plin

1 Þ point [white dots in
Figs. 2(e)–2(i)], thus providing a positive answer to the

FIG. 1. Nonlinear effects in the excitation of two-level systems
by a single free electron. We represent the probability P1 as a
function of the first-order (linear) probability Plin

1 for a lossless
pointlike two-level system with and without inclusion of back-
scattering. The P1 ¼ Plin

1 probability for a bosonic excitation is
also shown for comparison. Many multiple uncorrelated electrons
produce a probability of 1=2.
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question posed in the introduction, although complete
excitation requires very specific conditions to take place.
The position of this maximum occurs at values of Plin

1 that
are in the range of those obtained in the point-interaction
limit (Fig. 1), while the impact parameter Re lies close
to the stationary points of Gq1;00 as a function of qRe

for a wave vector transfer q ¼ ω10=v determined by the
nonrecoil approximation [cf. the maxima of the curves
in Fig. 2(b) and the abscissas of the white dots in Figs. 2(e)–
2(i)]. Nevertheless, we observe broad peak distributions in
spatial impact parameter, thus relaxing the condition for a
tightly focused e-beam. Two of the studied symmetries
have this maximum at Re ¼ 0, accompanied by a lack of
any zeros in the real-space profile of the corresponding
coupling coefficients [Fig. 2(a)], in contrast to the other
excitations under consideration. Incidentally, P1 presents
multiple maxima as we move along Re for fixed Plin

1 , the
magnitudes of which decrease with increasing impact
parameter. This is the result of a complex evolution of
the position-dependent probability jf1ðzÞj2 along the elec-
tron path, which exhibits oscillations before reaching an
asymptotic value of P1 at large z [see examples of this
dynamics in Figs. 2(c) and 2(d)].
Interestingly, in the nonrecoil approximation, the deex-

citation probability of a two-level system initially prepared

FIG. 2. Excitation of two-level systems by a single free electron. We consider the configuration illustrated in the inset of (a) and study
the excitation probability for different transition symmetries. (a),(b) Electron-sample interaction coefficients G10ðzÞ and Gq1;00 in the
real-space (a) and momentum-space (b) representations, respectively, for dipolar (px and pz) and quadrupolar (dz2 , dxz, and dx2−y2 )
excitations with different angular symmetries. (c),(d) Evolution of the excited state occupation as a function of position along the
electron trajectory z and impact parameter Re for two selected dipolar and quadrupolar excitation symmetries (see labels).
(e)-(i) Dependence of the postinteraction excitation probability (at z → ∞) as a function of the normalized impact parameter
ω10Re=v and linear probability Plin

1 for all nonvanishing dipolar and quadrupolar excitation symmetries under the investigated beam-
sample configuration. The probability reaches 100% at the positions indicated by the white dots in (e)–(i). We take fixed values of
Plin
1 ¼ 2.5 and 1.5 in (c) and (d), respectively. The vertical dashed line in (e) corresponds to the value ω10Re=v ¼ 0.2 used in Fig. 3(a).

FIG. 3. Recoil effects in near-edge excitation. (a) Excitation
probability P1 for a two-level sample as a function of incident
electron energy (horizontal axis, normalized to the excitation
energy ℏω10) and linear excitation probability Plin

1 . We consider
dipolar excitations of px symmetry and a normalized impact
parameter ω10Re=v ¼ 0.2 [i.e., corresponding to conditions along
the vertical white dashed line in Fig. 2(e) in the nonrecoil limit].
(b) Probability extracted from (a) for fixed Plin

1 ¼ 1 (black curve)
compared with the excitation probability for a bosonic mode with
the same 0 → 1 matrix element (green curves, comprising a
decomposition in the contributions Pn of different Fock states
jni, as well as the final average population hni ¼ P∞

n¼1 nPn).
Dashed curves indicate the ε0 ≫ ω10 nonrecoil limit.
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in the excited state (e.g., via previous exposure to a laser π
pulse) is fully identical to the excitation probability starting
from the ground state (see demonstration in SM [52]), and
therefore, 100% deexcitation is also predicted.
Effect of electron recoil.—The solution of Eqs. (2) and

(4) for a two-level system produces an excitation proba-
bility that is substantially reduced with respect to the
nonrecoil limit when the incident electron energy ℏε0
approaches the excitation threshold ℏω10. We illustrate
this effect in Fig. 3(a) for ω10Re=v ¼ 0.2 and px transition
symmetry over a wide range of coupling strengths (vertical
axis), but we find that this conclusion is general upon
extensive numerical inspection of different Re values. The
nonrecoil result is however recovered when ε0 is just a few
times ω10. A similar effect of recoil is observed in the
excitation of a bosonic mode [Fig. 3(b)], although the
interplay between different Fock states jni leads to a more
complex evolution characterized by sharp oscillations in
both the total excitation probability and the partial con-
tribution coming from each jni state. These oscillations are
attenuated as ε0 increases, leading to a Poissonian distri-
bution [40,54] (see also SM [52]).
We also find that recoil breaks the aforementioned excita-

tion-deexcitation symmetry in a two-level system, particularly
when ε0=ω10 approaches 1 (see Fig. S1 in SM [52]).
In summary, a wealth of phenomena unfolds from the

interaction between free electrons and few-level systems.
Remarkably, the excitation probability is independent of
the shape of the electron wave function even when non-
linear and recoil effects are rigorously accounted for. In
addition, complete excitation of a two-level system by an
individual electron is possible, but it requires specific
interaction conditions that depend on the symmetry of
the excited mode. Low-energy electrons in the < 100 eV
range are promising to explore these effects, as they can
generate multiple excitations of a single plasmon mode in
atomically thin nanostructures [40]. Excitons in two-
dimensional materials [59] offer a potentially practical
candidate to study the interaction of free electrons with
few-level systems, while defect states in those materials,
already explored with electron tunneling microscopy [58],
are robust two-level systems that could be investigated with
low-energy electrons in a reflection configuration. For low-
energy electrons aimed at a solid surface, reflection could
be incorporated as an extension of the present analysis from
plane waves to low-energy electron-diffraction-like states
[60]. Free-electron interaction with diluted atomic or
molecular gases could also serve as a platform to study
the coupling strength, continuing previous efforts on low-
energy electron, ion, and positron collisions with atomic
gases [30–39]. As an exciting direction, incipient electron
microscopy studies on optical atomic lattices and conden-
sates [61] could be extended to measure inelastic scattering
and explore the physics portrayed in the present work.
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