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The STAR Collaboration reports measurements of back-to-back azimuthal correlations of di-π0s
produced at forward pseudorapidities (2.6 < η < 4.0) in pþ p, pþ Al, and pþ Au collisions at a center-
of-mass energy of 200 GeV. We observe a clear suppression of the correlated yields of back-to-back π0

pairs in pþ Al and pþ Au collisions compared to the pþ p data. The observed suppression of back-to-
back pairs as a function of transverse momentum suggests nonlinear gluon dynamics arising at high parton
densities. The larger suppression found in pþ Au relative to pþ Al collisions exhibits a dependence of the
saturation scale Q2

s on the mass number A. A linear scaling of the suppression with A1=3 is observed with a
slope of −0.09� 0.01.

DOI: 10.1103/PhysRevLett.129.092501

The quest to understand quantum chromodynamics
(QCD) processes in cold nuclear matter has in the last
years revolved around the following questions. Can we
experimentally find evidence for a novel universal regime
of nonlinear QCD dynamics in nuclei? What is the role of
saturated strong gluon fields? What are the degrees of
freedom in this high gluon density regime? These questions
have motivated and continue to motivate theoretical efforts
and experiments at facilities worldwide.
Collisions between hadronic systems, i.e., pþ A and

dþ A at the Relativistic Heavy Ion Collider (RHIC)
provide a window to the parton distributions of nuclei at
small momentum fraction x (down to 10−3). Several RHIC
measurements have shown that, at forward pseudorapidities
(deuteron going direction), the hadron yields are sup-
pressed in dþ Au collisions relative to pþ p collisions
in inclusive productions [1–4] and dihadron correlations
[4,5]. The mechanisms leading to the suppression are not
firmly established. The density of gluons in nucleons and
nuclei increases at low x due to gluon splitting. At a
sufficiently small value of x, yet to be determined by
experiments, the splitting is expected to be balanced by
gluon recombination [6,7]. The resulting gluon saturation
[8–15] is one of the possible explanations for the suppres-
sion of forward hadron (jet) production. Initial- and final-
state multiple scattering can determine the strength of the
nuclear-induced transverse momentum imbalance for back-
to-back particles [16–19]. Energy loss in the nuclear
medium is also predicted to result in a significant sup-
pression of forward hadron (jet) production. For dþ A
the contributions from double-parton interactions to the

dþ A → π0π0X cross section are suggested as an alter-
native explanation for the suppression [20]. Therefore, it is
important to make the same measurements in the theoreti-
cally and experimentally cleaner pþ A collisions.
Back-to-back dihadron azimuthal angle correlations have

been proposed to be one of the most sensitive probes to
directly access the underlying gluon dynamics involved in
hard scatterings [21,22]. At a given x, the density of gluons
per unit transverse area is expected to be larger in nuclei than
in nucleons; thus, nuclei provide a natural environment to
study nonlinear gluon evolution [8]. Under the color glass
condensate (CGC) framework [23–25], gluons from differ-
ent nucleons are predicted to amplify the total transverse
gluon density by a factor of A1=3 for a nucleus with mass
number A. Saturation is characterized by a transverse
momentum scale, referred to as Qs. Two modes can be
identified: one weakly coupled (transverse momentum
k⊥ ≫ Qs) and one strongly coupled (k⊥ ≤ Qs) [26]. Qs

of a nucleus is enhanced with respect to the nucleon at
fixed values of x and Q2. One can parametrize the gluon
distributions following the Golec-Biernat Wüsthoff (GBW)
model [27] with Q2

s ∝ A1=3Q2
s0ðx=x0Þ−λ, where Qs0 ¼

1 GeV, x0 ¼ 3.04 × 10−4, and λ ¼ 0.288. The CGC frame-
work predicts that at forward angles (large pseudorapidities)
high x quarks and gluons in the nucleon interact coherently
with gluons at low x in the nucleus [28]. As a result, the
probability to observe the associated hadrons is expected to
be suppressed in pðdÞ þ A collisions compared to pþ p,
and an angular broadening of the back-to-back correlation of
dihadrons is predicted [29,30].
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In this Letter, we report measurements of back-to-back
azimuthal correlations of di-π0s in pþ Al and pþ Au
relative to pþ p collisions in the forward-pseudorapidity
region (2.6 < η < 4.0) at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The near-side

peak mainly addresses physics related to fragmentation and
is therefore not discussed in this Letter. If the suppression
of correlation functions is observed in pþ A collisions, the
use of different ion beams provides the opportunity to test
the CGC prediction of Q2

s dependence on A. The data were
obtained from pþ p, pþ Al, and pþ Au collisions in
2015 with the π0s reconstructed from photons, which
were identified with the STAR forward meson spectrometer
(FMS).
The FMS is an electromagnetic calorimeter installed at

the STAR experiment in the forward-pseudorapidity region
[31]. It is seven meters away from the nominal interaction
point, facing the clockwise circulating RHIC proton beam,
which makes the FMS response insensitive to the p, Al, and
Au target beam remnants. The FMS is a highly segmented
octagonal shaped wall with a 40 cm × 40 cm square hole
surrounding the beam pipe. It contains 1264 lead glass
blocks of two different types and sizes. The 476 small cells
from the inner portion each have dimensions of about
3.8 cm × 3.8 cm × 45 cm and collectively cover a pseu-
dorapidity range from 3.3 to 4.0. The outer region sur-
rounding the small cells is a set of 788 large cells,
5.8 cm × 5.8 cm × 60 cm in size, covering a pseudorapid-
ity range from 2.6 to 3.3.
The collision events are triggered by the FMS itself,

based on the transverse energy. The FMS board sum
triggers [31], which demand that the energy sum in
localized overlapping areas is above particular thresholds,
are used in the analysis. To remove the beam background,
the multiplicity at the time of flight detector (jηj < 0.9) [32]
is required to be above 2 and the number of tiles firing at
the backward (aluminum and gold going direction) beam
beam counter [33] (BBC, −5.0 < η < −3.3) is above 0.
The energy and transverse momentum pT of the photon
candidates are required to be above 1 GeVand 0.1 GeV=c,
respectively. The energy asymmetry of π0 ’s photon com-
ponents jðE1 − E2Þ=ðE1 þ E2Þj is required to be under 0.7
to reduce the combinatoric background which peaks near 1;
this selection is commonly utilized in reconstructing π0s
with the FMS [34,35]. The selected invariant mass range of
the π0 candidates is between 0.07 and 0.2 GeV=c2.
The correlation function CðΔϕÞ is defined as

CðΔϕÞ ¼ ½NpairðΔϕÞ=ðNtrig × ΔϕbinÞ�, where Npair is the
yield of the correlated trigger and associated π0 pairs, Ntrig

is the trigger π0 yield, Δϕ is the azimuthal angle difference
between the trigger π0 and associated π0, and Δϕbin is the
bin width of Δϕ distribution. In each pair, the trigger π0 is
the one with the higher pT value, p

trig
T , and the associated π0

is the one with the lower pT value, passo
T . To remove the

correlation induced by asymmetric detector effects, the

measured correlation functions shown in this Letter are
corrected through dividing them by the correlation func-
tions computed for mixed events. Δϕ distributions of two
π0s produced in different events are extracted from the ϕ
distributions of the trigger π0s and the associated π0s. The
correlation for mixed events is the Δϕ distribution nor-
malized by Nbin=Nmix

pair, where Nbin is the number of bins in
Δϕ and Nmix

pair is the number of π0 pairs for mixed events.
The correlations are not corrected for the absolute detection
efficiency. The corrected correlation function is fitted from
Δϕ ¼ −π=2 to Δϕ ¼ 3π=2 with two individual Gaussians
at the near-side (Δϕ ¼ 0) and away-side (Δϕ ¼ π) peak,
together with a constant for the pedestal. The area of the
away-side peak is the integral of the correlation function
from Δϕ ¼ π=2 to Δϕ ¼ 3π=2 after pedestal subtraction,
describing the back-to-back π0 yields per trigger particle;
the corresponding width is defined as the σ of the away-side
peak according to the fit.
Figure 1 shows the comparison of CðΔϕÞ for forward

back-to-back π0 pairs observed in pþ p, pþ Al, and pþ
Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. In the upper panel, in

the low-pT regime, a clear suppression is observed in pþ
A compared to the pþ p data. The back-to-back π0 yields
per trigger in pþ Au (pþ Al) are suppressed by about a
factor of 1.7 (1.4) with respect to pþ p collisions. Larger
suppression in pþ Au relative to pþ Al at the same
collision energy supports an A dependence of Q2

s as
predicted in Refs. [23,29]. The suppression decreases with
increasing pT of the π0s. From the bottom panel of
Fig. 1, the suppression is found to be weaker compared
to the low-pT range in pþ Au collisions. The area, width,
and pedestal in pþ p, pþ Al, and pþ Au collisions with
full di-π0 pT combinations can be found in Supplemental
Material [37].
The parton momentum fraction x with respect to the

nucleon inside the nucleus is proportional to the pT of the
two π0s; Q can be approximated as the average pT of
the two π0s. Varying the gluon density in x and Q2 can be
achieved by changing the pT of the two π0s at forward
pseudorapidities. The low x andQ2 regime where the gluon
density is large and expected to be saturated, can be
accessed by probing low-pT π0s; when pT is high, x
(Q2) is not sufficiently small to reach the nonlinear regime.
The simulated x and Q2 distributions in pþ p collisions
can be found in Supplemental Material [37]. For the lowest

pT bin that can be measured with the FMS, ptrig
T ¼

1.5–2 GeV=c and passo
T ¼ 1–1.5 GeV=c, the probed x2

covers a wide range from 10−4 to ∼0.5. The mean values of
x2 and Q2 for this bin are 0.05 and 2.2 GeV2, respecti-

vely. For the highest pT bin, ptrig
T ¼ 3–5 GeV=c and

passo
T ¼ 2–2.5 GeV=c, the mean value of x2 is 0.1 and

Q2 is 4.6 GeV2.
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In Fig. 2, the area, width, and pedestal ratios of back-to-
back di-π0 correlations in pþ Al and pþ Au relative to
pþ p collisions are shown as a function of passo

T . The
systematic uncertainties of the area, width, and pedestal are
estimated from nonuniform detector efficiency for each
collision system as a function of ϕ. A data driven
Monte Carlo method was performed bin by bin in pT to
determine the systematic uncertainties of the area, width,
and the pedestal. An input correlation, without detector
effects, was sampled by two Gaussians at the near-side and
away-side peaks and a constant for pedestal. A correlation
with detector effects included was obtained by weighting
the ϕ distributions with the data and then a mixed-event
correction was applied to the correlation. The difference

between the input and the corrected correlations defines the
estimated systematic uncertainties, which serves as a
closure test. The systematic uncertainty depends on pT
and rarely depends on the collision system. The systematic
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tainties. The horizontal width of the bands is chosen for visual
clarity and does not reflect the uncertainty. The points of pþ Al
collisions are slightly offset in passo

T for visual clarity. The theory
prediction based on the RCBK model [36] is calculated for an
impact parameter b ¼ 0.
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(0.68� 0.03), and 3.30� 0.07 (0.64� 0.01), respectively. Bot-
tom panel: ptrig

T ¼ 2.5–3 GeV=c and passo
T ¼ 2–2.5 GeV=c; the

area × 103 (width) of the correlation in pþ p, pþ Al, and pþ
Au collisions are 0.18� 0.01 (0.47� 0.03), 0.13� 0.03
(0.51� 0.07), and 0.15� 0.01 (0.45� 0.03), respectively.
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uncertainties of the relative area obtained at passo
T ¼

1–1.5 GeV=c, 1.5–2 GeV=c, and 2–2.5 GeV=c are around
5%, 15%, and 22%, respectively, for ptrig

T ¼ 2.5–3 GeV=c.
The corresponding systematic uncertainties of the relative
width are 0.1%, 5%, and 16%. The corresponding system-
atic uncertainties of the relative pedestal are 4%, 12%,
and 23%.
Theoretical calculations [38] from Ref. [36] predict the

area ratio of central pþ Au collisions (impact parameter
b ¼ 0) relative to pþ p collisions and are shown in
Fig. 2(a). In this model, the gluon content of the saturated
nuclear target is described with transverse-momentum-
dependent (TMD) gluon distributions and the small-x
evolution is calculated numerically by solving the nonlinear
Balitsky-Kovchegov equation [42,43] with running cou-
pling corrections (RCBK). No predictions of width or
pedestal are shown, since the model currently does not take
into account soft gluon radiation as well as several other
factors that affect the width, and it does not provide
predictions of pedestal. At low passo

T , the RCBK model
predicts a larger suppression in central collisions than
peripheral collisions. This explains the deviation between
the MinBias pþ Au data and the predictions at b ¼ 0. We
will present a detailed study of the centrality dependence in
a separate paper following this Letter.
In Fig. 2(b), the Gaussian widths of the di-π0 correlation

peaks remain the same between pþ p and pþ A collisions
for the different passo

T ranges, i.e., the broadening predicted
in the CGC framework in Refs. [29,30] is not observed.
This observation is in agreement with a similar measure-
ment in dþ Au collisions by the PHENIX experiment [5]
and pþ Pb collisions by the ATLAS experiment [44]. In
Fig. 2(c), the pedestal in pþ A is slightly lower than in
pþ p collisions at low passo

T . At high passo
T , the pedestals

from pþ p and pþ A collisions are virtually identical.
Note that the measured pedestal in dþ Au is 2–3 times
higher than in pþ p collisions [5]. This observation can
provide insight into the contribution of multiple parton
interactions to dihadron correlation in dþ Au collisions
[20,40].
The STAR experiment performed a unique measurement

of the A dependence in back-to-back di-π0 correlations at
forward pseudorapidities. The relative area in pþ Au and
pþ Al with respect to pþ p collisions is shown in Fig. 3
as a function of A1=3; the systematic uncertainty is around
3% at ptrig

T ¼ 1.5–2 GeV=c and passo
T ¼ 1–1.5 GeV=c.

Nonlinear effects are found largest in the lowest pT range
and no strong ptrig

T dependence is observed. The ratio for
A ¼ 1 has no uncertainty since the numerator and denom-
inator are fully correlated. A specific pT range probes the
suppression in pþ Au and pþ Al collisions in the same
x − −Q2 phase space. Therefore, the suppression is domi-
nantly influenced by A according to the GBW model [27].
A linear dependence of the suppression as a function of
A1=3 is observed within the uncertainties in Fig. 3, the slope
(P) is found to be −0.09� 0.01.

In summary, the measurements of azimuthal correlations
of di-π0s at forward pseudorapidities are performed using
2015 STAR 200 GeV pþ p, pþ Al, and pþ Au data.
Results of the back-to-back correlations are given as a
function of pT , with the trigger π0 in the range of 1.5 <
ptrig
T < 5 GeV=c and the associated π0 in the range of

1 < passo
T < 2.5 GeV=c. A clear suppression of back-to-

back yields is observed in pþ A compared to pþ p data
for pairs probing small x (andQ2) with low pT. The present
results are the first measurements of the A dependence of
this nuclear effect; the suppression is enhanced with higher
A and scales with A1=3. No increase in the width of the
azimuthal angular correlation is seen within experi-
mental uncertainties. The stable pedestal in pþ A and
pþ p collisions provides opportunities to understand the
contributions from multiple parton scatterings in dþ A
collisions.
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