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We study the generation and evolution of second-order energy-density perturbations arising from
primordial gravitational waves. Such “tensor-induced scalar modes” approximately evolve as standard
linear matter perturbations and may leave observable signatures in the large-scale structure of the Universe.
We study the imprint on the matter power spectrum of some primordial models which predict a large
gravitational-wave signal at high frequencies. This novel mechanism, in principle, allows us to constrain or
detect primordial gravitational waves by looking at specific features in the matter or galaxy power
spectrum, thereby allowing us to probe them on a range of scales unexplored so far.
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Introduction.—Inflation in the early Universe [1] plays a
crucial role in the standard model of cosmology, as it
provides the seeds for structure formation through scalar
(energy-density) perturbations originating from quantum
vacuum oscillations of the scalar field driving the accel-
erated Universe expansion. At the same time, inflation
produces tensor (gravitational-wave) perturbations by
quantum fluctuations of the metric tensor. It is usually
believed that only scalar modes feed structure formation,
while primordial gravitational waves (GWs) contribute to
cosmic microwave background (CMB) temperature anisot-
ropies and polarization, while not affecting the large-scale
structure (LSS) of the Universe. The only considered
exceptions to this rule come from the so-called “tensor
fossils,” where large-amplitude long-wavelength GW cou-
ple to scalar modes giving rise to specific anisotropic
signatures in the LSS [2–4], and from indirect effects of
GWs in the LSS clustering and shear [5–7] or galaxy
shapes [8].
In this Letter, we explore a novel mechanism for

generating matter-density perturbations based upon the
nonlinear evolution of primordial tensor modes. This
mechanism was first proposed and analyzed in Refs. [9–
11]. These tensor-induced scalar modes are statistically
independent of standard adiabatic density perturbations, so
that the overall matter power spectrum is merely the sum
of the ones from the two components. Because of the
fact that gravitational waves are frozen on superhorizon
scales, they can source our second-order perturbations
only on subhorizon scales, so our effect does not produce
CMB anisotropies on large scales, unlike the linear matter
perturbation. Here we consider scales which entered the
Hubble radius after matter-radiation equality. A more

detailed analysis where smaller scales are included will
be presented in a separate paper [12].
Our main result is that primordial GWs can lead to

observable effects in the matter power spectrum. In
particular, we focus here on models of inflation where
the linear tensor power spectrum is either blue-tilted or
endowed with a Gaussian bump, as it happens, e.g., in
axion inflation models [13–15]. Such models, which are
also good candidates to be probed by next-generation GW
interferometers, such as LISA or ET [16,17], leave an
observable imprint on LSS. This opens the possibility to
constrain or to detect primordial GWs through future LSS
surveys, such as Euclid [18], DESI [19], SPHEREx [20],
SKA [21], Roman Space Telescope [22], and Vera Rubin
Observatory (LSST) [23].
Tensor-induced scalar modes.—Nowadays, the use of

linear perturbation theory (e.g., Refs. [24,25]) is well
justified for very large scales and as long as mainly the
(matter) power spectrum is considered. On the other hand,
higher-order perturbation theory [26–28] (or more sophis-
ticated resummation techniques [29–32]) is needed, as soon
as one extends the analysis to higher-order correlators (such
as the bispectrum or trispectrum) or aims to describe LSS
formation on mildly nonlinear scales and/or in connection
with galaxy bias schemes. In this context, one of the main
focuses, recently revived, has been the scalar perturbations
as seeds of second-order tensor ones, for the obvious reason
that they are the dominant ones at linear order. Discussion
of scalar-induced gravitational waves can be found in
various works, such as Refs. [11,33–43] (see also
Ref. [44] for a review).
In this Letter, we present the opposite case; i.e.,

we look for the signature of GW on cosmic structures.
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Detecting the primordial GW background is one of the
major goals of cosmology, pursued both through CMB
polarization data [45–47] and, after the recent ground-
breaking detection of astrophysical GWs [48], also at
future interferometers [49–51]. According to the mecha-
nism studied in what follows, GWs produced in the
early Universe (see, e.g., Refs. [45,52–54]) can source
scalar perturbations upon reentering the horizon [55].
By studying their effect on the matter perturbations, we
also aim to provide a new way to constrain the tensor-to-
scalar perturbation ratio on scales where we have poor
constraints.
In our analysis, we consider a spatially flat Friedmann-

Lemaître-Robertson-Walker background metric perturbed
up to second order ds2 ¼ a2ðηÞ½−dη2 þ γijðx; ηÞdxidxj�;
here, η is the conformal time and aðηÞ the scale factor. In
our analysis, we restrict ourselves to include collisionless
cold dark matter plus a cosmological constant; these
simplifications allow us to perform our calculations in
the synchronous and comoving gauge, which, because of
the absence of pressure gradients, can also be made time
orthogonal [57]. The conformal spatial metric γij contains
linear scalar and tensor modes (linear vector modes are not
considered here, as they would decay in an expanding
universe). At second order, one has scalar-driven scalar,
vector, and tensor perturbations, second-order terms mixing
linear scalar and tensors (i.e., “tensor fossils,” as mentioned
above), tensor-induced vector and tensor modes [11], and
finally, the tensor-induced scalar modes, which we are most
interested in here (see also Refs. [58,59]). Since the latter
are statistically independent of linear scalar modes, we
are allowed to deal separately with them, recovering the
effect of standard density perturbations at the end. Hence,
we take only tensor modes at first order and only scalar

ones at second order: γij ¼ ð1 − ϕð2ÞÞδij þ ð1=2ÞDijχ
kð2Þ þ

χð1ÞTij where χð1ÞTij are the linear tensor modes (GW), Dij ¼
∂i∂j − ð1=3Þ∇2δij, and ϕð2Þ and χkð2Þ are tensor-induced
scalar metric perturbations.
We get the fluid deformation tensor by subtracting

the isotropic background expansion from the covariant
derivative of the four-velocity θμν ¼ auμ;ν −Hδμν. Choosing
comoving observers yields a huge advantage, as it keeps the
fluid four-velocity orthogonal to the constant-time spatial
hypersurface (described by γij), so that our θμν is purely
spatial, coinciding with the extrinsic curvature of constant-
time spatial hypersurfaces θij ¼ −Ki

j ¼ γikγ0kj=2, with a
prime denoting differentiation with respect to conformal
time. Our main equations are the Raychaudhuri and
continuity equations [11,60]

θ0 þHθ þ θijθ
j
i þ 4πGa2ρ̄mδ ¼ 0; ð1Þ

δ0 þ ð1þ δÞθ ¼ 0; ð2Þ

where θ is the peculiar volume expansion scalar,H≡ a0=a,
ρ̄m the mean energy density of the matter component, and δ
its density contrast δ ¼ ðρm − ρ̄mÞ=ρ̄m.
We write the density perturbation as δ ¼ δð1Þ þ δð2Þ=2,

and similarly for θ. Now, from Eqs. (1) and (2) at second
order, we get

θ0ð2Þ þHθð2Þ þ 2θð1Þij θð1Þji þ 4πGa2ρ̄mδð2Þ ¼ 0; ð3Þ

δ0ð2Þ þ 2δð1Þθð1Þ þ θð2Þ ¼ 0: ð4Þ

We combine these to get (χð1ÞTij ¼ χij from here on)

δð2Þ00 þHδð2Þ0 − 4πGa2ρ̄mδð2Þ ¼
1

2
χ0ijχ0ij: ð5Þ

As expected, the lhs of this equation coincides with the
evolution equation for the linear density contrast, but a
source term appears, which is quadratic in the tensor
perturbation modes. Remembering that the GW energy
density is given by ρGW ¼ ð1=32πGa2Þhχ0ijχ0iji, it is clear
that this is the quantity sourcing δð2Þ in Eq. (5).
Density contrast.—The homogeneous and sourced sol-

utions of Eq. (5) are, respectively,

δð2Þh ¼ c1ðxÞDþðηÞ þ c2ðxÞD−ðηÞ; ð6Þ

δð2Þs ¼ DþðηÞ
Z

η

0

dη̃
D−ðη̃Þ
Wðη̃Þ

1

2
χ0ijχ0ij

−D−ðηÞ
Z

η

0

dη̃
Dþðη̃Þ
Wðη̃Þ

1

2
χ0ijχ0ij; ð7Þ

where Dþ and D− are the linear growing and decaying
homogeneous solutions, and WðηÞ≡D−ðηÞD0þðηÞ −
DþðηÞD0

−ðηÞ is the Wronskian. From Eq. (7), we can
see that our density contrast, though derived at second
order, evolves in time just like the linear one.
Here we focus on scalar modes entering the horizon

during matter domination (we will include the effects of
dark energy later on). In order to compute the power
spectrum, we move to Fourier space and write

χijðx; ηÞ ¼
X
σ

Z
d3k
ð2πÞ3 e

ik·xχσðk; ηÞϵσijðk̂Þ; ð8Þ

where ϵσijðk̂Þ are the polarization tensors [i.e.,
ϵσijðk̂Þϵσ0ijðk̂Þ ¼ 2δσσ0] for the two GW polarizations
σ ¼ þ;×, and χσðk; ηÞ is the GW mode function which
sources the scalar perturbations. Having in mind scales
which entered the Hubble radius in matter domination, we
can make use of the following tensor transfer function [54]
χσðk; ηÞ ¼ AσðkÞ½3j1ðkηÞ=kη�, where j1 is the spherical
Bessel function of order one, and AσðkÞ is a stochastic
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zero-mean random field characterized by the following
autocorrelation function:

hAσ1ðk1ÞAσ2ðk2Þi¼ ð2πÞ3δ3ðk1þk2Þδσ1σ2
2π2

k31
Δ2

σðk1Þ; ð9Þ

Δ2
σðkÞ being the power spectrum for each GW polarization.
The time integral in Eq. (7) can be split into two parts,

from the end of inflation to matter-radiation equality, and
from equality to the observation time. The growing and
decaying solutions for density perturbations, as well as the
transfer function for the source GWs, should be appropri-
ately chosen for the respective integrals. In the first
radiation-dominated part, linear density perturbations
involve two modes Dþ ¼ ln η and D− ¼ const, whereas
the GW transfer function behaves as j0ðkηÞ, while in the
matter era, Dþ ¼ η2 and D− ¼ η−3, and the GW transfer
function is proportional to j1ðkηÞ. However, as we will
explain later, the contribution from the first part is negli-
gible compared to the second one.
The power spectrum of the stochastic GW background

depends on the specific mechanism by which it was
generated. In this Letter, we mainly focus on inflationary
models which are characterized either by a monochro-
matic spectrum or by a blue tensor spectrum or by a
Gaussian bump. Moreover, we consider parity-invariant
mechanisms of production of GWs, so we expect that both
polarizations give the same effect, leaving for a future
analysis the possibility to consider parity breaking early
Universe models.
Power spectrum.—Our final goal is to study the present-

day matter power spectrum, taking into account the effect
from this tensor-induced perturbation and explore how to
infer such an effect from its imprint on the LSS. Following
the discussion before, we can evaluate the time integral
purely in the matter era, extending the lower limit of time
integration down to 0. According to the definition of matter
power spectrum Δ2

δðkÞ,

hδð2Þðk; ηÞδð2Þðk0; ηÞi ¼ ð2πÞ3δ3ðkþ k0Þ 2π
2

k3
Δ2

δð2Þ ðkÞ; ð10Þ

and using Eq. (9), we get the following expression:

Δ2
δð2Þ ðkÞ¼

k3

2π

X
σ;σ0

Z
d3k2

Δ2
σ0 ðk2ÞΔ2

σðjk−k2jÞ
k32jk−k2j3

fðk;k2;θÞ

×

�
η2

10

Z
η

0

dη̃
η̃

�
3j1ðk2η̃Þ

k2η̃

�0�3j1ðjk−k2jη̃Þ
jk−k2jη̃

�0

−
1

10η3

Z
η

0

dη̃η̃4
�
3j1ðk2η̃Þ

k2η̃

�0�3j1ðjk−k2jη̃Þ
jk−k2jη̃

�0�2
;

ð11Þ
where we have defined fðk; k2; θÞ to be the following
contraction of the polarization tensors

fðk;k2;θÞ≡
X
σ;σ0

ϵσ
0

ijðk̂2Þϵσijð dk−k2Þϵσ0klð−k̂2Þϵσklð d−kþk2Þ:

Here, θ is the angle between k̂ and k̂2. In the convolution
and all the expressions from hereon, k always corresponds
to the induced scalar modes, and k2, ðk − k2Þ correspond to
the source GW modes. Here, we confine ourselves to the
standard practice of dealing with the growing mode only,
which we believe to be sufficient. GW modes are frozen
outside the horizon, so from Eq. (7), we can see that in
Eq. (11) the contribution will come after horizon entry,
when GWs start oscillating with an amplitude damped by a
factor ∼1=a. As we are considering scalar modes crossing
the horizon during matter domination, we can safely switch
on our sourcing at η ¼ 0, since at that early time our modes
are superhorizon, and hence are not triggered. Moreover,
since after entering the horizon, GWs decay away, and we
consider η → ∞ as an upper bound of the time integral
instead of putting the exact age of the Universe, as most of
the contribution will come from around the time of horizon
entry anyway.
To solve such integrals, it is useful to work with the

variables x ¼ k2=k, y ¼ jk − k2j=k, and use the dimension-
less time variable τ ¼ kη̃ [61]. Considering only the
growing-mode term in the square brackets of Eq. (11),
we get

Δ2
δð2Þ ðkÞ

¼ 81k4η4

100

Z
∞

0

dx
Z

xþ1

jx−1j
dyðxyÞ−2fðx; yÞΔ2

σðxkÞΔ2
σðykÞ

×

�Z
∞

0

dτ
τ3

j2ðxτÞj2ðyτÞ
�
2

; ð12Þ

where the function f in terms of x and y now reads

fðx;yÞ¼ 1

16x4y4
½x8þðy2−1Þ4þ4x6ð7y2−1Þ

þ4x2ðy2−1Þ2ð7y2−1Þþx4ð6−60y2þ70y4Þ�:
ð13Þ

There are two important points to stress here: one is the
wave-vector integration domain that now, in terms of x and
y, is given by [41] ðxþ yÞ ≥ 1 ∧ ðxþ 1Þ ≥ y ∧ ðyþ 1Þ ≥
x and the second is the time integration domain that has
been extended to η → ∞ for the reasons explained above.
This allows us to solve the integral analytically in terms of
hypergeometric functions. We have indeed checked that the
contribution from η to infinity is negligible compared to the
contribution from 0 to η.
Let us stress here that, although our density contrast

modes strictly lie in the matter domination regime, in
calculating Eq. (12), we are integrating over the whole
frequency range of GW modes, using the appropriate
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transfer functions shown in Eq. (11). This is despite the fact
that the transfer functions in Eq. (11) are valid only for
tensor modes entering the horizon during matter domina-
tion. However, we have checked that tensor modes entering
during radiation domination constitute a negligible con-
tribution of the resulting signal.
Results for different GW sources.—The spectrum of the

GW background depends on the details of the generation
mechanism. Besides the standard vacuum oscillations of
the gravitational field during inflation, there are many other
well-motivated early Universe scenarios which can produce
a large GW background also at small scales. Within
inflationary mechanisms, this is the case, e.g., of models
where the inflaton is coupled to gauge [i.e., U(1) or SU(2)]
fields [62,63], or models where space diffeomorphisms are
broken during inflation [64–66]. Also, primordial black
holes formed via the gravitational collapse of small-scale
curvature perturbations, are a powerful source of second-
order GWs [42,67]. Regarding postinflationary mecha-
nisms, a strong GW signal can be produced by topological
defects [68,69] or phase transitions [70,71]. As we will
show in the coming section, all the models that have a large
monopole GW signal can source the density perturbation
affecting in this way the matter power spectrum.
So, now we are going to quantify the impact on the

matter power spectrum (12) for different input GW signals.
The power spectrum for individual polarization modes is
related to the GW power spectrum by the relation
Δ2

σðkÞ ¼ ð1=2ÞΔ2
TðkÞ. It is important to stress that, moving

away from CMB scales, we have less stringent bounds on
the amplitude of the GW spectrum. This allows us to
choose larger values for their amplitude.
Power-law spectrum.—As a first benchmark signal, we

consider a power-law spectrum, which is typical of many
single-field inflationary models [53]

Δ2
Tðk2Þ ¼ AT

�
k2
k�

�
nT
: ð14Þ

Here, AT is the amplitude at a given reference or pivot
scale k�, and nT is the tensor spectral index. Usually
AT is translated in terms of the tensor-to-scalar ratio r
defined as the ratio between the tensor and scalar
power-spectrum amplitudes at k�, rk� ¼ AT=AS. Standard
single-field, slow-roll inflationary models predict a nearly
scale-invariant power spectrum on superhorizon scales
(with nT ¼ −2ϵ, with ϵ being the usual slow-roll param-
eter). On CMB scales, the tensor-to-scalar ratio is strongly
constrained by the latest Planck data, r0.01 < 0.066 (at
95% CL, PLANCK TT;TE;EEþ lowEþ lensingþ
BK15þ LIGO& Virgo2016) constraining −0.76 < nT <
0.52 [72]. We consider the case of a blue-tilted tensor
power-spectrum, choosing nT ¼ 0.32, which is still within
the range of values allowed by present and future GW
interferometers [16,72], and fix the GW power-spectrum

amplitude at AT ¼ rAs¼ 0.06×2.1×10−9¼ 1.26×10¼10.
We can observe in Fig. 1, that the effect starts to be relevant,
especially on relatively large k.
Monochromatic spectrum.—A useful case study is a

monochromatic tensor spectrum, which can be regarded as
an approximation of a spectrum with a sharp peak

Δ2
Tðk2Þ ¼ ATδ

�
ln
k2
k�

�
: ð15Þ

Typical models that predict such a spectrum can be found in
Ref. [74]. In this case, the form of the power spectrum can
be found analytically, and it reads

Δ2
δð2Þ ðkÞ¼4×10−5ðkη0Þ4A2

T

×

�
8k2�
k2

þ k6

16k6�
−

k4

2k4�
þ3

k2

k2�
−8

�
Θð2k�−kÞ; ð16Þ

where the condition k < 2k� comes from momentum
conservation.
Gaussian-bump spectrum.—A well-motivated early

Universe scenario which predicts a large and characteristic
amplitude for the GW spectrum consists of a GW signal
endowed with a large Gaussian bump. An example where
we see this kind of bump is an axion field coupled to SU(2)
gauge fields as spectator fields besides the inflaton [13,14].
Such models result in GWs which are amplified at the same
level as the scalar perturbation, and so they are possible
targets both for CMB B-mode observations [14] and
interferometers [16,75]. Therefore, for our purposes, one
can study their signatures on the matter power spectrum as
another way to test or constrain such early Universe
scenarios. The tensor power spectrum is characterized by
the following Gaussian bump:

FIG. 1. Impact of different GW power spectra on the matter
power spectrum: (i) blue-tilted ðAT ¼ 1.26×10−10;nT ¼ 0.32;
k� ¼ kCMB ¼ 0.01Mpc−1Þ, (ii) monochromatic ðAT ¼ 10−5;
k� ¼ 0.008 Mpc−1Þ, and (iii) Gaussian bump ðAT ¼ 10−5; σ ¼ 2;
kp ¼ 0.04 Mpc−1Þ. The value of h is fixed at 0.68 [73].
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Δ2
Tðk2Þ ¼ ATe

− 1

2σ2
ln2ðk2kpÞ: ð17Þ

The impact on the matter power spectrum is visible in
Fig. 1, where the effect of the Gaussian bump reflects also
on the shape of the matter power spectrum. In Fig. 1, we
report the standard matter power spectrum and the one
including the effects computed in this Letter. The dimen-
sional power spectrum of matter we show in the plot is
related to the dimensionless Δ2

δð2Þ ðkÞ derived from Eq. (12)
through the relation Pδð2Þ ðkÞ ¼ ð2π2=k3ÞΔ2

δð2Þ ðkÞ. Some of
these effects are similar or degenerate with other cosmo-
logical observable like non-Gaussianity, projection effects,
kinetic dipole, finger of the observer, and wide-angle
effects (e.g., see Refs. [76–80]), so it is important to find
also other peculiar signatures.
We can see that different kinds of GW sources result in

extra contributions to the matter power spectrum which are
comparable to, and exceeding the linear power spectrum, in
different ranges of wave numbers. We calculate Eq. (12) as
a function of AT and nT for a power-law GW spectrum (14),
and considering a 4% error bound with respect to the linear
matter power spectrum at k ¼ 0.006 Mpc−1, we obtain
the parameter space shown in Fig. 2. The gray region shows
the allowed range for nT–AT accounting for the men-
tioned error.
Including the effect of the dark energy.—All of our

analyses so far have been done under the assumption that
after matter-radiation equality, the Universe is dominated
by cold dark matter only. Choosing an Ωm different from 1
results in a different linear growth factor Dþ [in Eqs. (6) or
(7)], which suppresses the matter growth. The fitting
formula for the growth suppression factor for linear density
perturbation is given in Refs. [81,82]. Using Ωm ¼ 0.32
[73], we find our suppressed power spectrum to be

Pδð2Þ ðz¼0;Ωm¼0.32Þ≃0.59Pδð2Þ ðz¼0;Ωm¼1Þ. Figure 1
already includes the dark energy component.
Early-time evolution.—In the previous sections, we

have discussed the induced matter perturbation modes
entering the horizon during matter domination. As antici-
pated, the contribution from the modes which enter before
matter-radiation equality is negligible compared to the
former one. Here, we briefly discuss what we may have
to face in the era when radiation was the dominant
component. Second-order perturbations in synchronous
gauge for the scalar-tensor and tensor-tensor couplings
are discussed in Refs. [58] and [83], respectively, for the
matter- and radiation-dominated stages, although their full
matter power spectra were not studied.
At early times, the Universe consists of a mixture of

radiation and pressureless matter. Since there are two
matter components now, we would not have the advantage
of having the fluid four-velocity tensor orthogonal to
the spatial hypersurface anymore. Instead, we have to
use the conservation equations for both components and
the Einstein equations. Since the radiation and cold dark
matter components interact only gravitationally, their
energy-momentum tensors satisfy their conservation laws
separately. The standard way of dealing with this scenario
is to consider two phases: first, very early times when the
gravitational potential is solely determined by radiation and
determines matter perturbations, and second, when the
matter perturbation grows significantly toward the equality
time and dominantly contributes to the potential. In this
case, we would get the Meszaros’s equation for the
subhorizon evolution of matter perturbation in a universe
filled with radiation and matter [84–87], but now with a
source term. In order to know the full nonlinear evolution at
second order, we then need to solve the inhomogeneous
equation. This is a treatment we leave for a future work.
Discussion and conclusion.—In this Letter, we have

analyzed the new effect of “tensor-induced scalarmodes” on
the present-day matter power spectrum. We have found that
a large GW power spectrum can leave an imprint on the
matter power spectrum. There are two important features of
our second-ordermatter perturbation: First, we do not have a
contribution on superhorizon scales, unlike the linear matter
perturbation, and as a result, our effect does not produce
CMB temperature anisotropy on large scales. Second, our
matter density contrast completely mimics the linear one on
the subhorizon scales. In that sense, it can be considered as a
linear perturbation sourced by gravitational radiation van-
ishing outside the horizon. A distinguishing feature would
be its high intrinsic non-Gaussianity, which we intend to
explore in the future. We have also showed the parameter
space for the tensor spectral index versus the GWamplitude,
accounting for the uncertainties on the measurements of
thematter power spectrum. This signature can be useful both
for detecting and constraining GWs in a novel way on a
range of scales on which we currently have very poor

FIG. 2. The region of parameter space for nT and AT where the
power spectrum of the GW-sourced density perturbation mode
with the wave number k ¼ 0.006 Mpc−1 obeys a 4% error bound
on the linear matter power spectrum for a power-law GW source.
The gray region shows the allowed range of the parameters
assuming the mentioned error uncertainty.
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information and to increase the accuracy in the estimation of
matter power spectrum.

P. B. and S. M. sincerely thank Serena Giardiello for her
help in clarifying some concepts. A. R. thanks Stefano
Anselmi, Mauro Pieroni, and Lorenzo Valbusa Dall’Armi
for useful comments and discussions. N. B., D. B. and
S. M. acknowledge support from the COSMOS network
through the ASI (Italian Space Agency) Grants No. 2016-
24-H.0 and No. 2016-24-H.1-2018. A. R. and P. B.
acknowledge funding from Italian Ministry of Education,
University and Research through the “Dipartimenti di
eccellenza” project Science of the Universe.

*pbari@pd.infn.it
†angelo.ricciardone@pd.infn.it
‡nicola.bartolo@pd.infn.it
§daniele.bertacca@pd.infn.it
∥sabino.matarrese@pd.infn.it

[1] A. H. Guth, The inflationary universe: A possible solution to
the horizon and flatness problems, Phys. Rev. D 23, 347
(1981).

[2] K.W. Masui and U.-L. Pen, Primordial Gravity Wave
Fossils and Their Use in Testing Inflation, Phys. Rev. Lett.
105, 161302 (2010).

[3] D. Jeong and M. Kamionkowski, Clustering Fossils from
the Early Universe, Phys. Rev. Lett. 108, 251301 (2012).

[4] E. Dimastrogiovanni, M. Fasiello, D. Jeong, and M.
Kamionkowski, Inflationary tensor fossils in large-scale
structure, J. Cosmol. Astropart. Phys. 12 (2014) 050.

[5] N. Kaiser and A. H. Jaffe, Bending of light by gravity
waves, Astrophys. J. 484, 545 (1997).

[6] D. Jeong and F. Schmidt, Large-scale structure with gravi-
tational waves I: Galaxy clustering, Phys. Rev. D 86,
083512 (2012).

[7] F. Schmidt and D. Jeong, Large-scale structure with gravi-
tational waves II: Shear, Phys. Rev. D 86, 083513 (2012).

[8] M. Biagetti and G. Orlando, Primordial gravitational waves
from galaxy intrinsic alignments, J. Cosmol. Astropart.
Phys. 07 (2020) 005.

[9] K. Tomita, Non-linear theory of gravitational instability in
the expanding universe. II, Prog. Theor. Phys. 45, 1747
(1971).

[10] K. Tomita, Non-linear theory of gravitational instability in the
expanding universe. III, Prog. Theor. Phys. 47, 416 (1972).

[11] S. Matarrese, S. Mollerach, and M. Bruni, Second order
perturbations of the Einstein–de Sitter universe, Phys. Rev.
D 58, 043504 (1998).

[12] P. Bari et al. (to be published).
[13] R. Namba, M. Peloso, M. Shiraishi, L. Sorbo, and C. Unal,

Scale-dependent gravitational waves from a rolling axion, J.
Cosmol. Astropart. Phys. 01 (2016) 041.

[14] B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu,
and M. Shiraishi, Finding the chiral gravitational wave
background of an axion-SU(2) inflationary model using
CMB observations and laser interferometers, Phys. Rev. D
97, 043506 (2018).

[15] E. Dimastrogiovanni, M. Fasiello, and T. Fujita, Primordial
gravitational waves from axion-gauge fields dynamics, J.
Cosmol. Astropart. Phys. 01 (2017) 019.

[16] N. Bartolo et al., Science with the space-based interferom-
eter LISA. IV: Probing inflation with gravitational waves, J.
Cosmol. Astropart. Phys. 12 (2016) 026.

[17] M. Maggiore et al., Science case for the Einstein Telescope,
J. Cosmol. Astropart. Phys. 03 (2020) 050.

[18] A. Blanchard et al., Euclid preparation: VII. Forecast
validation for Euclid cosmological probes, Astron. As-
trophys. 642, A191 (2020).

[19] A. Dey et al., Overview of the DESI Legacy Imaging
Surveys, Astron. J. 157, 168 (2019).
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