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The transverse-field Ising model is one of the fundamental models in quantum many-body systems, yet a
full understanding of its dynamics remains elusive in higher than one dimension. Here, we show for the first
time the breakdown of ergodicity in d-dimensional Ising models with a weak transverse field in a
prethermal regime. We demonstrate that novel Hilbert-space fragmentation occurs in the effective
nonintegrable model with d ≥ 2 as a consequence of only one emergent global conservation law of
the domain wall number. Our results indicate nontrivial initial-state dependence for nonequilibrium
dynamics of the Ising models with a weak transverse field.
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Introduction.—The transverse-field Ising model (TFIM)
serves as a minimal model among quantum many-body
systems [1,2]. Despite its simplicity, the TFIM is quite
difficult to investigate in higher-than-one dimensions
because of its nonintegrable nature. It is particularly
important for foundation of quantum statistical mechanics
to elucidate dynamical properties of the model. Indeed, its
quantum thermalization has recently been investigated in
relatively large systems [3–7]. For example, ergodicity in
the ordered phase is controversial in the two-dimensional
TFIM [3,4,8]. It was found that the model does not always
thermalize in some quenches with numerical experiments
[8] and that nonthermal eigenstates exist in a two-dimen-
sional ladder system in the weak transverse-field limit [9].
The search for understanding quantum thermalization

and the conditions behind it has been expanded substan-
tially [10–22] in the recent decades because of the progress
in experimental techniques [23–30]. One of the most
important achievements is the eigenstate thermalization
hypothesis (ETH) [10–12,15,31], which conjectures that all
energy eigenstates are thermal and provides a sufficient
condition for thermalization in isolated quantum systems.
While the ETH has been confirmed numerically in various
systems [15,32–38], there is also growing interest in
models violating the ETH. The emergence of nonthermal
eigenstates has often been attributed to extensively many
local conserved quantities due to, e.g., integrability [21,39–
42] and localization [43–47]. The Hilbert space fragmen-
tation (HSF), or shattering, has recently attracted much
attention as yet another mechanism of invalidating the
ETH in nonintegrable models [48–62]. In some models
such as fractonic systems [63,64], kinetic constraints

impose restrictions on the dynamics [49–51] and create
frozen regions which dynamically divide the systems. This
generates a fragmented structure of the Hilbert space with
exponentially many nontrivial subspaces. In these cases,
initial states cannot access the entire Hilbert space and fail
to thermalize. For many previous models showing the HSF,
the presence of at least two conserved quantities and the
locality of the interaction were the origin of relevant kinetic
constraints.
In this Letter, we show the emergence of nonergodicity

in a prethermal regime for Ising models with a weak
transverse field on a hypercubic lattice in dimensions
higher than one. In particular, by analytical calculations,
we reveal for the first time that the effective model for the
TFIM in the weak-transverse-field limit exhibits the HSF
for d ≥ 2. Notably, this effective model has only one global
conserved quantity, namely the domain-wall (DW) con-
servation. The locality of the Hamiltonian and the DW
conservation law leads to a kinetic constraint in the model
[Fig. 1(a)], and to the appearance of frozen regions. Due to
the frozen regions, the Hilbert space is separated into
exponentially many subspaces [Fig. 1(b)]. Consequently,
the ETH breaks down, and the effective model shows
nonthermalizing behavior depending on the initial state.
The emergence of frozen regions in our model is distinct
from the ones in the previously studied models which
require several conserved charges for exhibiting such
frozen regions [49–51,57]. For d ¼ 2, we further demon-
strate that rich dynamical properties are found in subspaces
inside the DW sectors, including those found in non-
integrable, integrable, and quantum many-body scarred
systems [55,65–67].
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Model.—We consider the TFIM on a d-dimensional
hypercubic lattice

Ĥ ¼ ĤDW þ hx
X

i

σ̂xi ; with ĤDW ≔ −
X

hi;ji
σ̂zi σ̂

z
j; ð1Þ

where σ̂μi (μ ¼ x, y, z) denotes the Pauli spin operators at
site i, hi; ji indicates that the sites i and j are neighboring,
and hx denotes the strength of the transverse field. While
the DW number, i.e., the eigenvalues nDW of

P
hi;jið1−

σ̂zi σ̂
z
jÞ=2, is not conserved under the time evolution by Ĥ for

finite hx, it is approximately conserved for a long time if hx
is sufficiently small [68]. Indeed, from a first-order per-
turbation theory, we obtain the following effective
Hamiltonian [9,69]:

Ĥeff ≔ ĤDW þ hxĤ1; with Ĥ1 ≔
X

i

σ̂xi Q̂i; ð2Þ

where the operator Q̂i projects all spin configurations onto
the state space in which the sum of the z components of
the 2 × d spins surrounding the site i is zero [see Fig. 1(a)].
For example, the projector Q̂i for d ¼ 2 is explicitly given
by [70]

Q̂i ≔
5

8
−

1

16

�X
j∈ngbhðiÞσ̂

z
j

�
2

þ 3

8

Y

j∈ngbhðiÞ
σ̂zj; ð3Þ

where ngbhðiÞ denotes the nearest-neighbor sites of the site
i. The effective Hamiltonian Ĥeff approximates the dynam-
ics of local observables governed by the original
Hamiltonian [Eq. (1)] for a certain timescale that goes to
infinity as hx → 0 [70,77,78].
Since Ĥ1 commutes with ĤDW, Hamiltonians Ĥ1 and

Ĥeff lead to the same dynamics when we specify a DW

sector. Thus, we focus on the Hamiltonian Ĥ1 in the
following. The Hamiltonian Ĥ1 is nonintegrable as dis-
cussed later; it conserves the DW number and is block
diagonalized accordingly. Apart from spatial symmetries,
such as inversion, the Hamiltonian also has global chiral
symmetry, i.e., Ĥ1 anticommutes with

Q
i σ̂

ν
i (ν ¼ y, z)

[79]. This symmetry produces nonzero energy eigenvalues
in pairs with opposite signs. While the Hamiltonian also
has global Z2 symmetry (i.e., Ĥ1 commutes with

Q
i σ̂

x
i ),

we confirm that this symmetry is irrelevant for the
emergence of HSF.
Hilbert space fragmentation.—We now demonstrate the

Hilbert-space fragmentation of Ĥ1 in each sector charac-
terized by the number of DWs [see Fig. 1(b)]. We first show
that the kinetic constraint induced by Q̂i forms regions
where the spin dynamics is frozen. More specifically, let us
consider a product state jFi ¼ Q

i∈F jsii forming a sub-
region F on the entire lattice Λ, where jsii is one of the
eigenstates of σ̂zi . If jFi satisfies the following condition,
we call F a frozen region: Q̂iðjFi ⊗ jMiÞ ¼ 0 for ∀ i ∈ F
and any jMi defined on Λ=F . The frozen regions remain
unchanged under the time evolution by Ĥ1 (as well as Ĥeff ).
Meanwhile, nonfrozen regions, which we call melting
regions, are isolated from one another and separated by
frozen regions. Nontrivial dynamics occurs only in the
melting regions. Below we focus on the case with d ¼ 2

although most observations here hold for d ≥ 3 too.
Figure 1(c) exemplifies a possible spin configuration and

associated frozen and melting regions. One simple example
of the frozen region is a ladderlike region along the lattice
with all spins aligning in the þz direction, percolating the
system from one end to the other [the area A in Fig. 1(c)].
Another example is a wider region in which not all the spins
are aligned in the same direction [the region between the
areas B and C in Fig. 1(c)] and surrounds some melting

FIG. 1. (a) Schematic picture of the kinetic constraint arising from the projection operator Q̂i in the Hamiltonian [Eq. (2)], where we
take the dimension d as 2. Each spin at site i on a square lattice is flipped only when its two nearest neighbors are up and the other two
spins are down. (b) Fragmented structure of the effective Hamiltonian. In addition to the block structure due to the conservation of the
domain-wall number nDW, the Hamiltonian matrix for an appropriate basis is further block diagonalized, namely fragmented. (c) An
example of frozen regions (nonshaded) and melting regions (blue-shaded), where d ¼ 2 and the periodic boundary condition is
assumed. Red and blue arrows on each lattice site represent up and down spins in σ̂zi basis, respectively. The areas surrounded by dashed
lines and labeled A and D exemplify prototypical spin configurations in frozen regions, and those labeled B and C indicate one-
dimensional melting regions that correspond to the PXP and XX models, respectively. Frozen regions percolate the system so that every
spin in these regions is guaranteed to have at least three nearest-neighboring spins with the same sign.
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regions. A spin configuration in a frozen region can also
exhibit a checkerboard pattern [the area D in Fig. 1(c)]. In
all of the cases, every spin is arranged in such a way that at
least (dþ 1) of its nearest-neighbor spins have the same
direction, which set the value of Q̂i to zero. Because this
condition prohibits a frozen region from having corners
under the periodic boundary conditions, we conjecture that
all frozen regions percolate the system from one side to the
other [70].
Because of the frozen regions, the Hilbert space has

exponentially many subspaces. For example, a spin con-
figuration having a frozen region cannot change into
another spin configuration having a different frozen region
by the Hamiltonian dynamics. This splits the Hilbert space
into subspaces. Moreover, even when the arrangement of
frozen regions is the same, there are many ways in which
the DWs are spatially distributed over separated melting
regions. Since the density of DW within each melting
region is conserved over time, the Hilbert space is broken
up into even smaller subspaces. Each subspace is therefore
characterized by the configuration of the frozen regions and
the spatial distribution of the DW density for melting
regions.
The emergence of the dynamically fragmented subspa-

ces suggests that the relaxation dynamics of the system
strongly depends on the details of the initial state. When we
take an initial state from one of the subspaces in a given
DW sector and let it evolve, the state remains in this
subspace. Let us consider, for example, two initial product
states jψ1i and jψ2i shown in Fig. 2(a), which are slightly
different in their spin configurations but have the same
energy in a DW sector. Figure 2(b) shows the dynamics of
the expectation value of the magnetization density from
these two initial product states according to the effective

Hamiltonian Ĥeff . Throughout this Letter, we perform
numerical calculations under the condition that the spins
constituting the system are surrounded by fixed frozen
spins pointing down. Due to the frozen region in the middle
of the lattice, which emerges only in the state jψ2i, the
magnetization relaxes to substantially different values for
the two initial conditions, which indicates ergodicity
breaking. This example highlights that a frozen region
covering a large area of the system can be converted into a
melting region with a small change in the initial configu-
ration in this model. Similar behavior can be also observed
under the time evolution by Ĥ with a weak hx (see the
Supplemental Material [70]).
The nonergodicity due to the HSF in this model is deeply

related to the violation of the ETH. The fragmented
structure yields exponentially many nonthermal energy
eigenstates. Simple examples of such nonthermal states
are product frozen states, which correspond to the states in
isolated subspaces with the dimension one. As detailed in
the Supplemental Material [70], we show that the number
of frozen states increases exponentially in the system size,
indicating the emergence of the HSF [62]. We note that
Ref. [9] also finds a similar frozen state for an effective
model of TFIM on a pseudo-one-dimensional ladder, but
no HSF was discussed there. As another example, we find
eigenstates which have spatially inhomogeneous DW
density owing to frozen regions that act as a wall to
separate different melting regions.
Figure 3(a) shows the entanglement entropy of all the

energy eigenstates of Ĥ1 in a fixed DW sector for a N ¼
3 × 6 lattice [80]. We evaluate it by computing the von-
Neumann entropy of the left half of the system. In generic
systems obeying the ETH, eigenstate entanglement entropies
are close to one another for close eigenenergies. In Fig. 3(a),
we demonstrate the violation of the ETH in this model,
that is, a broad distribution of the entanglement entropy even
for close eigenenergies and the presence of eigenstates with
low entanglement. Because of the existence of frozen regions
that divide the system into isolated parts, there are many
eigenstates with zero bipartite entanglement [81].
Several remarks are in order. First, the kinetic constraint

in Ĥ1 is associated with the conservation of the DW
number alone. In particular, the model possesses frozen
regions that dynamically divide the system and exhibits
exponentially many frozen states. These properties are
often found in the previously studied models [62] as a
consequence of more than one conserved quantities [49–
53,57,60]. Our finding here demonstrates that such non-
trivial physics can occur even when there is only one
apparent conserved quantity. Second, consequences of the
percolation behavior of frozen regions depend on d. For
d ¼ 2, the system is always divided into isolated parts by
frozen regions that percolate the system and act as walls.
However, for d > 2, frozen regions do not always divide
the system because their shape can be, e.g., a square prism

FIG. 2. (a) Spin configurations of the two initial states for a
N ¼ 3 × 6 lattice. We assume that the system is surrounded by
fixed spins pointing down. Regions with blue shades show
melting ones. (b) Magnetization dynamics starting from the
two initial product states. Time evolution of the expectation
value hM̂zðtÞi ≔ hψðtÞjð1=NÞPi σ̂

z
i jψðtÞi shows that a slightly

different initial condition results in substantially different sta-
tionary states.
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which percolates only in one direction along the lattice. It is
also worth mentioning that the Hamiltonian [Eq. (2)] does
not yield many frozen regions and the resultant HSF for
d ¼ 1, while we show in fact it does for d > 1. Finally,
eigenstates with frozen regions can be found in every
DW sector as long as the system is sufficiently large.
Thus, nonergodic behavior can be found for initial states
with any finite energy density with respect to the effective
Hamiltonian Ĥeff . This suggests that the original TFIM in a
weak transverse field exhibits nonthermal behavior for long
times at any energy scale for particular initial states.
Subspace properties.—Now we investigate properties of

the fragmented subspaces of Ĥ1. The dynamics for each
subspace is observed only in the melting regions, being
characterized by their shapes and their boundary condi-
tions. Here we specifically consider the case for d ¼ 2 and
show that there is a rich variety of dynamics in some
melting regions, including those found in nonintegrable,
integrable, and quantum many-body scarred systems.

The Hamiltonian Ĥ1 itself is presumably nonintegrable.
To demonstrate this, let us choose a subspace having no
frozen regions. In Fig. 3(b), we perform the analysis of
energy-level statistics for this subspace. We calculate the
distribution of the consecutive energy-gap ratio rn ¼
min ðδn=δn−1; δn−1=δnÞ with δn ≔ Enþ1 − En, where En
denotes the nth energy eigenvalue in the subspace [83].
The statistics of this ratio in Fig. 3(b) show a good
agreement with that of the Gaussian orthogonal ensemble
(GOE), indicating that this subspace as well as the entire Ĥ1

is nonintegrable.
Additionally, in the subspace without frozen regions, we

numerically find eigenstates with low entanglement in the
bulk of the spectrum, which are regarded as quantummany-
body scarred states [55,65–67]. Figure 3(c) demonstrates
the presence of such states around E ¼ 0;�1;� ffiffiffi

2
p

, and
� ffiffiffi

6
p

. The origin of these states cannot be attributed to
frozen regions as they are excluded in this subspace. We
find that some of them originate from specific local
structures of the adjacency graph of the Hamiltonian
[87,88]; see the Supplemental Material for details [70].
Interestingly, we find that the one-dimensional PXP

model and the XX model can be embedded as melting
regions of the model Ĥ1. First, let us discuss the emergent
PXP model [see the area B in Fig. 1(c)]. In this one-
dimensional region, all sites are adjacent to the frozen sites
with up spins. Therefore, in this region, every spin can be
flipped only when its two nearest neighbors are down due
to the kinetic constraint. Hence, the system is effectively
governed by

ĤB ¼
X

i∈B
σ̂xi

1

4
ð1 − σ̂ziþ1Þð1 − σ̂zi−1Þ: ð4Þ

This is the one-dimensional PXP model, a well-known
nonintegrable model for hosting quantum many-body scars
[66,89–92]. This implies that one observes a long-lived
oscillation of an observable in this one-dimensional region
if we prepare an appropriate initial configuration. Second,
let us briefly discuss the XXmodel [the area C in Fig. 1(c)].
In this region, the direction of the spin neighboring on the
right side is opposite to that neighboring on the left side.
We then find that the following Hamiltonian governs the
dynamics in this region:

ĤC ¼
X

i∈C
σ̂xi

1

2
ð1 − σ̂ziþ1σ̂

z
i−1Þ: ð5Þ

This is the same as the effective Hamiltonian of the Ising
chain in a weak transverse field [93] and is mappable to the
XX chain [94], which is exactly solvable, and thus
ergodicity is broken due to the integrability. This implies
that some subspaces become integrable when they only
have a specific type of melting region.

FIG. 3. (a) Entanglement entropy of all the energy eigenstates
in a DW sector for a N ¼ 3 × 6 lattice. At its boundaries, the
system is surrounded by fixed frozen spins pointing down. In all
panels (a)–(c), we take nDW ¼ 20, for which 0 ≤ nDW ≤ 36. We
find that the entanglement entropy exhibits a broad distribution
even for a fixed energy, indicating the breakdown of the ETH in
this DW sector. (b) Distribution of the consecutive energy-gap
ratio rn [83] for the subspace without frozen regions. The
statistics are calculated after resolving the two spatial inversion
symmetries along the x and y directions [84]. Dashed line shows
the Poisson prediction PPoissonðrÞ ¼ 2=ð1þ rÞ2Θð1 − rÞ, and the
solid line shows the GOE prediction PGOEðrÞ ¼ ð27=4Þðrþ r2Þ=
ð1þ rþ r2Þ5=2Θð1 − rÞ, where Θ is the Heaviside step function.
The agreement between the result and the GOE prediction
indicates the nonintegrability of the system defined in this
subspace. (c) Entanglement entropy of the energy eigenstates
in the subspace without frozen regions [extracted from the panel
(a)]. Most of the eigenstates with close energies have similar
values of entanglement entropy, in accordance with the ETH.
Meanwhile, a small number of low-entangled eigenstates appear
around specific values: E ¼ 0;�1;� ffiffiffi

2
p

, and � ffiffiffi
6

p
, which are

regarded as quantum many-body scars [55,65–67,70].
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Conclusion and outlook.—In this Letter we have rigor-
ously demonstrated that the effective model obtained from
the d-dimensional Ising model in a weak transverse field
on a hypercubic lattice exhibits the HSF for d ≥ 2. In
particular, the kinetic constraint, which is attributed to the
emergent conservation of the DW number in this
model, forms frozen regions that percolate the system.
Consequently, each DW sector fractures into exponentially
many isolated subspaces, leading to the violation of the
ETH. We furthermore showed that some of the subspaces
can be nonintegrable, integrable, and even possess scarred
eigenstates. Our results indicate that nontrivial initial-state
dependence is observed for prethermal dynamics of the
Ising models in a weak transverse field. Because the TFIM
in two and three dimensions are experimentally realiz-
able [5,95–101], we believe that the model serves as a novel
platform for observing the signatures of HSF, which is
distinct from previous experiments that required, e.g., tilted
potentials [102,103]. We leave it for future work to
investigate the robustness of transient nonergodicity under
long-range Ising interaction, which often arises in experi-
ments. Finally, given that Ĥeff is obtained in the weak-field
limit of the TFIM, it is interesting to see how properties of
the Ising model without the transverse field, such as
(classical) integrability and finite-temperature phase tran-
sition, affect physics in our model.
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[9] B. van Voorden, J. Minář, and K. Schoutens, Quantum
many-body scars in transverse field Ising ladders and
beyond, Phys. Rev. B 101, 220305(R) (2020).

[10] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[11] M. Srednicki, Chaos and quantum thermalization, Phys.
Rev. E 50, 888 (1994).

[12] H. Tasaki, From Quantum Dynamics to the Canonical
Distribution: General Picture and a Rigorous Example,
Phys. Rev. Lett. 80, 1373 (1998).

[13] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì,
Canonical Typicality, Phys. Rev. Lett. 96, 050403 (2006).

[14] S. Popescu, A. J. Short, and A. Winter, Entanglement and
the foundations of statistical mechanics, Nat. Phys. 2, 754
(2006).

[15] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems,
Nature (London) 452, 854 (2008).

[16] P. Reimann, Foundation of Statistical Mechanics under
Experimentally Realistic Conditions, Phys. Rev. Lett. 101,
190403 (2008).

[17] S. Goldstein, J. L. Lebowitz, C. Mastrodonato, R.
Tumulka, and N. Zanghi, Approach to thermal equilibrium
of macroscopic quantum systems, Phys. Rev. E 81, 011109
(2010).

[18] M. Rigol and M. Srednicki, Alternatives to Eigenstate
Thermalization, Phys. Rev. Lett. 108, 110601 (2012).

[19] C. Gogolin and J. Eisert, Equilibration, thermalisation, and
the emergence of statistical mechanics in closed quantum
systems, Rep. Prog. Phys. 79, 056001 (2016).

[20] H. Tasaki, Typicality of thermal equilibrium and thermal-
ization in isolated macroscopic quantum systems, J. Stat.
Phys. 163, 937 (2016).

[21] F. H. Essler and M. Fagotti, Quench dynamics and relax-
ation in isolated integrable quantum spin chains, J. Stat.
Mech. (2016) 064002.

[22] P. Reimann, Symmetry-prohibited thermalization after a
quantum quench, J. Stat. Mech. (2021) 103106.

[23] T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum
Newton's cradle, Nature (London) 440, 900 (2006).

[24] A. Polkovnikov, K. Sengupta, A. Silva, and M.
Vengalattore, Colloquium: Nonequilibrium dynamics of
closed interacting quantum systems, Rev. Mod. Phys. 83,
863 (2011).

[25] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J.
Schmiedmayer, Relaxation and prethermalization in an
isolated quantum system, Science 337, 1318 (2012).

[26] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider,

PHYSICAL REVIEW LETTERS 129, 090602 (2022)

090602-5

https://doi.org/10.1016/0038-1098(63)90212-6
https://doi.org/10.1088/0022-3719/6/15/009
https://doi.org/10.1103/PhysRevE.92.040103
https://doi.org/10.1103/PhysRevE.92.040103
https://doi.org/10.1103/PhysRevE.93.032104
https://doi.org/10.1103/PhysRevX.8.021069
https://doi.org/10.1103/PhysRevX.8.021069
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.21468/SciPostPhys.9.3.031
https://doi.org/10.21468/SciPostPhys.9.3.031
https://doi.org/10.1038/srep38185
https://doi.org/10.1038/srep38185
https://doi.org/10.1103/PhysRevB.101.220305
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevLett.80.1373
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevE.81.011109
https://doi.org/10.1103/PhysRevE.81.011109
https://doi.org/10.1103/PhysRevLett.108.110601
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1007/s10955-016-1511-2
https://doi.org/10.1007/s10955-016-1511-2
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1088/1742-5468/ac2a9c
https://doi.org/10.1038/nature04693
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1126/science.1224953


and I. Bloch, Observation of many-body localization of
interacting fermions in a quasirandom optical lattice,
Science 349, 842 (2015).

[27] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R.
Schittko, P. M. Preiss, and M. Greiner, Quantum thermal-
ization through entanglement in an isolated many-body
system, Science 353, 794 (2016).

[28] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Many-body
localization in a quantum simulator with programmable
random disorder, Nat. Phys. 12, 907 (2016).

[29] H. Labuhn, D. Barredo, S. Ravets, S. De Léséleuc, T.
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