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It is generally believed that collisions of particles reduce the self-diffusion coefficient. Here we show that
in odd-diffusive systems, which are characterized by diffusion tensors with antisymmetric elements,
collisions surprisingly can enhance the self-diffusion. In these systems, due to an inherent curving effect,
the motion of particles is facilitated, instead of hindered by collisions leading to a mutual rolling effect.
Using a geometric model, we analytically predict the enhancement of the self-diffusion coefficient with
increasing density. This counterintuitive behavior is demonstrated in the archetypal odd-diffusive system of
Brownian particles under Lorentz force. We validate our findings by many-body Brownian dynamics
simulations in dilute systems.
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Self-diffusion is related to the dynamics of a single
particle, commonly referred to as the tracer particle, in a
homogeneous system of host particles [1–4]. For purely
repulsive interaction potentials, it is quite intuitive that the
tracer particle is hindered in its motion by the host particles
giving rise to a slowdown in the dynamics. The long-time
self-diffusion coefficient Ds for a system of Brownian
particles can be calculated exactly in the low-density limit
asDs ¼ D0ð1 − αϕÞ, where ϕ is the area fraction,D0 is the
diffusion coefficient at infinite dilution, and α is a numeri-
cal factor that depends on the nature of interactions (α ¼ 2
for hard-core interactions) [5–8]. The reduction in the self-
diffusion coefficient of the tracer particle with increasing
density of host particles has been thoroughly demonstrated
in experimental and computational studies [9–12].
In this Letter, we study the self-diffusion coefficient in

systems which are characterized by probability fluxes that
are perpendicular to the density gradients. Analogous to
odd-viscosity [13–15], recently such diffusive behavior has
been aptly termed as odd diffusive [16] and has attracted
considerable attention [17–24]. We show that in odd-
diffusive systems, collisions, instead of hindering the
motion of the tracer particle, facilitate it resulting in an
enhancement of the dynamics. Specifically, we demon-
strate that in the low-density limit, increasing the density of
host particles leads to an increase in the self-diffusion
coefficient of the tracer particle. Moreover, by tuning the
odd diffusivity, particles can be rendered dynamically
invisible such that the tracer particle diffuses as a free
particle.
Odd-diffusive behavior emerges naturally in systems

with broken time-reversal and parity symmetry. A charged
Brownian particle in a magnetic field is a classic example of

a system with broken time-reversal symmetry [17]. Other
prominent examples of odd-diffusive systems are strongly
damped particles subjected to Magnus [15], or Coriolis
[25,26] forces or active chiral fluids [27–30]. In the limit of
low persistence length, an active chiral particle follows
curved trajectories, similar to the Brownian motion of a
charged particle under a magnetic field.
The Fokker-Planck equation (FPE) for the probability

density Pðr; tÞ for an odd-diffusive particle reads as

∂Pðr; tÞ
∂t

¼ ∇ · ½D∇Pðr; tÞ�; ð1Þ

where the diffusion tensor for two-dimensional isotropic
systems can be written in the general form [16,17]

D ¼ D0ð1þ κϵÞ; ð2Þ

where 1 ¼ ð1
0
0
1
Þ is the identity tensor and ϵ ¼ ð 0

−1
1
0
Þ is the

antisymmetric Levi-Civita symbol in two dimensions.D0 is
the normal diffusion coefficient of a particle which governs
the usual diffusive fluxes parallel to density gradients. The
odd-diffusive behavior is characterized by the parameter κ
which governs fluxes in the direction perpendicular to the
density gradients [20]. These fluxes have been called
Lorentz fluxes in the context of a Brownian particle
diffusing under the effect of Lorentz force. Since these
fluxes are divergence free, they do not affect the density
distribution of a single particle. However, in the presence of
boundaries, the Lorentz fluxes play an important role in the
time evolution of density distributions [16].
The surface of a fixed particle, for example, can be

regarded as an impenetrable boundary for other particles.
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In Figs. 1(a) and 1(b), we show the probability distribution
and fluxes of an odd-diffusive particle near a fixed particle,
which are obtained from Brownian dynamics simulations
of charged Brownian particles under Lorentz force [31].
At short times, the particle undergoes free diffusion, similar
to a normal diffusive particle (κ ¼ 0); see Fig. 1(a). In
contrast, the distribution of the particle at later times is
strongly affected by the fixed particle, shown in Fig. 1(b),
where the effect of odd diffusivity is strikingly evident. The
curved probability fluxes flow around the fixed particle in a
preferred direction. This phenomenon has no counterpart in
a normal diffusive system. In fact, as we show below, the
origin of the enhanced self-diffusion in odd-diffusive
systems is fundamentally related to these curved fluxes.
We now consider two diffusing particles. From the

perspective of the tracer particle, a host particle represents
a moving boundary at which the flux of the tracer must
vanish at all times. For particles performing normal
diffusion (κ ¼ 0), a collision is followed by the two
particles moving away from each other. It is apparent that
collisions hinder the diffusive exploration of space [see
Fig. 1(c)]. Odd-diffusive particles, on the contrary, diffuse
in a strikingly different way: when two particles collide,
rather than blocking each other, they move around each

other [see Fig. 1(d)]. In fact, for sufficiently large κ, a
collision effectively facilitates the motion of particles
around each other, an effect which we refer to as the
“mutual rolling effect.”
We consider a model system of two distinguishable hard-

core Brownian particles of diameter σ in two dimensions.
Ignoring hydrodynamic interactions, the FPE correspond-
ing to the probability density of this system is

∂PðtÞ
∂t

¼ ∇1 · ½D1∇1PðtÞ� þ∇2 · ½D2∇2PðtÞ�; ð3Þ

where PðtÞ≡ Pðr1; r2; tÞ. r1 and r2 are the position vectors
of particle one and two, respectively. D1 and D2 are
the corresponding odd-diffusion tensors [Eq. (2)]. Since
the particles cannot overlap, the FPE is defined only in the
region Ω ¼ R2 ×R2nB where B ¼ fðr1; r2Þ ∈ R2 ×R2;
kr1 − r2k ≤ σg is the forbidden area due to an overlap. The
hard-core interactions impose a no-flux boundary condition
on the moving boundary ∂B

D1½∇1P� · n1 þ D2½∇2P� · n2 ¼ 0; ð4Þ
where n1 and n2 are outward unit normal vectors of the two
particles such that n1 ¼ −n2 on ∂B.
Our goal is to obtain an effective description for the

marginal densities p1 ≡ R
Ωðr1Þ dr2Pðr1; r2; tÞ and p2 ≡R

Ωðr2Þ dr1Pðr1; r2; tÞ for particles one and two, respectively.

Here ΩðriÞ ¼ R2nBσðriÞ, where BσðriÞ is the disk of radius
σ centered at ri, i ∈ f1; 2g. In the dilute regime, where only
two-body collisions are relevant, we use an asymptotic
method adapted from Bruna and Chapman [33–35] which
treats the effect of density perturbatively. A crucial step is
the inclusion of the zero-flux boundary condition in Eq. (4),
which differs from the usual Neumann condition in normal
diffusive systems. The detailed calculations are shown in
the Supplemental Material [32].
We generalize our description to include an arbitrary

number of particles of each species in the low-density limit.
The effective FPEs for pi read as

∂pi

∂t
¼ ∇ ·Di½∇pi þ ðNi − 1Þσ2πpi∇pi

þ Njπσ
2ðΛipi∇pj − Γipj∇piÞ�; ð5Þ

whereNi andNj denote the number of particles of species i
and j with ði; jÞ ¼ ð1; 2Þ and (2,1) and

Λi ≡ 1þ D1 þD2

detðD1 þ D2Þ
Dj; ð6Þ

Γi ≡ D1 þ D2

detðD1 þ D2Þ
Di: ð7Þ

In our model, the two species can be differentiated via
their parameter κi and their diffusivity DðiÞ

0 . This makes the
model well suited for studying diffusion of a tagged particle

FIG. 1. Scaled density distribution (p1=pmax
1 ) of an odd-

diffusive particle near a fixed particle of same diameter σ at
short (a) and long times (b). The curved probability fluxes
(arrows) flow around the fixed particle in a preferred direction
which can be flipped by reversing the odd-diffusivity parameter κ.
Density distribution after a collision between two identical
diffusing particles: whereas a collision results in a probability
flow away from each other for normal particles (c) for odd-
diffusive particles the probability flows around each other (d).
This “mutual rolling” of the particles around each other facilitates
the motion resulting in an enhanced self-diffusion. The dashed
circles represent the initial configuration, and the crosses indicate
the displacements of particles’ centers. Insets in (d) show
individual probability distributions of the two particles. The
results are obtained from Brownian dynamics simulations of
charged Brownian particles under Lorentz force with κ ¼ 5.
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in the presence of host particles as well as the collective
diffusion of identical particles.
Let us consider that the two species have identical κ and

D0, i.e., D1 ¼ D2 ¼ D. To obtain the self-diffusion co-
efficient, we set N1 ¼ 1 (tagged particle), N2 ¼ N, and
define ϕ ¼ Nπσ2p2=4 as the area fraction of host particles
in two dimensions. The equation for the tagged particle
reduces to

∂p1ðr; tÞ
∂t

¼ ∇ · D½ð1 − 4ϕΓÞ∇p1�; ð8Þ

where Γ ¼ Γ1 ¼ Γ2 due to the identical diffusion matrices.
Note that the probabilistic flux due to the odd part of the
self-diffusion tensor Dð1 − 4ϕΓÞ in Eq. (8) is divergence
free and hence does not contribute to the mean-squared
displacement of the particle. Hence, the self-diffusion
coefficient is determined by the symmetric part alone
and reads as

Ds ¼ D0

�
1 − 2ϕ

1 − 3κ2

1þ κ2

�
: ð9Þ

Equation (9) is the main result of this Letter. It reduces to
the well-known expression for normal diffusive systems
(κ ¼ 0) with hard-core interactions Ds ¼ D0ð1 − 2ϕÞ [6–
8]. Our model generalizes this result. It predicts that for
κ < κc ¼ 1=

ffiffiffi
3

p
, collisions with the host particles reduce

the self-diffusion coefficient with respect toD0. For κ ¼ κc,
the host particles become effectively invisible to the tagged
particle, which diffuses with Ds ¼ D0. The most interest-
ing prediction of our model is that for κ > κc the self-
diffusion coefficient increases with increasing density of
host particles [see Fig. 2(a)]. In this regime, instead of
hindering, collisions with the host particles facilitate
the motion of the tagged particle due to the mutual rolling
effect [see Fig. 1(d)]. This suggests that in this regime the
mutual rolling effect significantly compensates for the
slowing down due to the many-body effects.
In Fig. 2(b), we show the variation of Ds with κ for a

fixed density of host particles. Increasing κ results in a
crossover from a reduced to an enhanced self-diffusion.
Simulations reveal that odd diffusivity enhances the self-
diffusion coefficient relative to a normal diffusing system
(κ ¼ 0) at all densities (see Supplemental Material [32]).
Furthermore, in the Supplemental Material [32], we
numerically show that for soft repulsive potentials our
findings remain unaffected.
We now consider the general case in which the tracer

particle and the host particles are characterized by different
values of the odd-diffusivity parameter κ. Specifically, one
can obtain the diffusion coefficient of a tracer particle
diffusing in the presence of host particles of different
species. For the tracer and the host particles, both with

same D0, the self-diffusion coefficient of the tracer particle
reads as

Ds ¼ D0

�
1 − 8ϕ

1 − κ1κ2 − 2κ21
ðκ1 þ κ2Þ2 þ 4

�
; ð10Þ

where κ1 corresponds to the tagged particle and κ2 to the host
particles. Note that the result of the self-diffusion for
identical particles [Eq. (9)] is a special case corresponding
to κ1 ¼ κ2. Figure 3(a) depicts the scenario of identical odd-
diffusive particles (κ1 ¼ κ2 ¼ κ), for which the self-diffusion
coefficient was shown in Fig. 2. Figure 3(b) shows Ds of
an odd-diffusive tracer particle (κ1 ¼ κ) in the presence of
normal diffusing host particles (κ2 ¼ 0). The self-diffusion
coefficient Ds ¼ D0f1 − 8ϕ½ð1 − 2κ2Þ=ð4þ κ2Þ�g shows a
crossover from reduction to enhancement at κc ¼ 1=

ffiffiffi
2

p
due

to collisions. For an odd-diffusive tracer particle for both

FIG. 2. (a) Reduced self-diffusion coefficient Ds=D0 as a
function of the area fraction ϕ for different values of the odd-
diffusivity parameter κ. Symbols represent data from Brownian
dynamics simulations of hard-core particles diffusing under
Lorentz force. Error bars are smaller than the symbols. Solid
lines correspond to the analytical prediction of Eq. (9). For the
critical value κc ¼ 1=

ffiffiffi
3

p
(filled symbols) particles are effectively

invisible to each other. For κ ¼ 1ð> κcÞ the self-diffusion
coefficient increases with increasing ϕ, and for κ ¼ 0.2ð< κcÞ
it decreases with increasing ϕ. (b) κ-governed crossover from a
reduced to an enhanced self-diffusion for two different area
fractions. Self-diffusion coefficient for κ ¼ κc is shown as filled
symbols.
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Figs. 3(a) and 3(b), a collision with the host particle
facilitates its motion giving rise to an enhancement of the
diffusion coefficient. Moreover, that Fig. 3(b) overtakes
Fig. 3(a) for κ >

ffiffiffiffiffiffiffiffi
7=5

p
raises the question whether in this

regime the diffusion of an odd particle is most efficient
within (normal) obstacles. In contrast to the enhancement,
Fig. 3(c) shows the case of a normal diffusing tracer particle
(κ1 ¼ 0) in the presence of odd-diffusive host particles
(κ2 ¼ κ) for which Ds ¼ D0f1 − ½8ϕ=ð4þ κ2Þ�g does not
show an enhancement of the self-diffusion coefficient. In this
case, Ds approaches D0 asymptotically. Nevertheless, odd
diffusivity of the host particles gives rise to a faster diffusion
of the tracer in comparison to normal host particles. The
theoretical predictions are validated by Brownian dynamics
simulations of hard-core interacting particles diffusing under
the effect of the Lorentz force [31].
The two scenarios in Figs. 3(a) and 3(b) highlight that

odd-diffusive tracer particles can enhance their diffusion
coefficient beyond D0 via collisions with the host particles
in agreement with the physical mechanism suggested in
Fig. 1. The mutual rolling effect furthermore gives rise
to unusual force autocorrelation as we show in the
Supplemental Material [32] in the low-density limit. The
effect of collisions on the self-diffusion coefficient is
quantified by the integral of the force autocorrelation

function. While the autocorrelation is a positive monoton-
ically decaying function of time for normal diffusing
(κ ¼ 0) particles [36], it turns negative in time for odd-
diffusing particles. In fact for κ > κc, the integral of the
autocorrelation function is negative implying an enhance-
ment of the self-diffusion coefficient in odd-diffusive
systems in agreement with Eq. (9).
We now consider how odd diffusion affects the collective

dynamics. A collision helps the tracer particle escape local
caging by the host particles resulting in enhanced explora-
tion of space. From the perspective of the whole species,
however, nothing has changed; only two particles have
interchanged positions due to a collision. This suggests that
the collective diffusion coefficient is unaffected by odd
diffusivity. By untagging the tracer particle in Eq. (8), the
interspecies terms drop out, and we obtain a single-species
system, with N þ 1 identical particles characterized by the
collective diffusion coefficient

Dc ¼ D0ð1þ 4ϕÞ; ð11Þ

which is indeed independent of κ and has the same
expression as in normal diffusive systems [34,37]. We
note that Ds > Dc for large κ which might have interesting
implications for density relaxation in odd-diffusive fluids.
How can these theoretical predictions be tested in

experiments? Mesoscopic overdamped systems of colloidal
spinners (magnetic dipoles), when exposed to a viscoe-
leastic solvent exhibit a Magnus force which can be tuned
by the spinning frequency [38]. With κ of order 1 and above
possible, this could be a promising realization for odd-
diffusive systems. Another possible realization is milli-
meter-sized granules, which beget high charges when
exposed to a vibrating substrate due to triboelectric effects
[39,40]. For a millimeter-sized sphere where inertia can
almost be ignored, with the surface charge density
σ ¼ 1e nm−2, where e is the electronic charge, the visco-
sity η ≈ 10−4 Pa s (Propylene at room temperature), and
B ¼ 1 T, one obtains κ ≈ 1. A plausible experimental setup
can also be realized in dusty plasma which can be almost
overdamped for the high density of the ambient gas. Large
magnetic fields exceeding 104 T can be effectively realized
using noninertial rotating frames [25,26] at which κ of
order 1 is in reach for millimeter-sized dust particles.
Furthermore the mutual rolling effect should be verifiable
in self-spinning granules [41–43], in chiral colloidal micro-
swimmers [27–30,44], even in rotating molecular motors
[45,46] and vortex fluids [47,48].
Self-diffusion is affected by both direct and hydro-

dynamic interactions [49,50]. Whereas hydrodynamic
interactions can enhance the self-diffusion coefficient
[51,52], direct interactions always reduce the self-diffusion
in ordinarily diffusing systems. In this Letter, we igno-
red the hydrodynamic interactions and showed that in

FIG. 3. Self-diffusion of tracer particle (red) in the presence of
host particles (blue) of area fraction ϕ ¼ 0.03. Symbols represent
data from Brownian dynamics simulations of hard-core Brownian
particles diffusing under Lorentz force. (a) The tagged particle
and the host particles are odd diffusive. In this case, there is a
crossover at a critical value of κc ¼ 1=

ffiffiffi
3

p
from reduction to

enhancement of Ds=D0. (b) The tagged particle is odd diffusive,
and the host particles are normal. There is a crossover at κc ¼
1=

ffiffiffi
2

p
again from reduction to enhancement. (c) For a normal

tagged particle and odd-diffusive host particles, there is no
enhancement of the self-diffusion. With increasing κ, the self-
diffusion coefficient asymptotically approaches the ideal diffu-
sivity, Ds ¼ D0. The self-diffusion of normal diffusing particles
(κ ¼ 0) is shown in gray.
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odd-diffusive systems, interactions can enhance the self-
diffusion coefficient.
Our findings might be relevant to other soft matter

systems. The enhancement of self-diffusion is reminiscent
of Taylor dispersion [53] in which flow along a direction
affects diffusion along the orthogonal direction. This is
phenomenologically similar to odd-diffusivity induced
mutual rolling of two colliding particles. It would be
interesting to investigate Taylor dispersion in a dilute
suspension of odd-diffusive particles. Our findings might
also be applicable to systems with Magnus forces where
dragging a probe particle was found to speed up with
increasing system density [15,54]. Recently wiggling nano-
pores have been shown to enhance the diffusion coefficient
of a particle [55]. Surprisingly, the enhancement has
exactly the same functional form as in Eq. (9).
Additional work is needed to investigate whether the
similarity extends beyond the mathematical formalism
employed in our Letter and fluctuating nanopores.
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