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We study the problem of generating independent samples from the output distribution of Google’s
Sycamore quantum circuits with a target fidelity, which is believed to be beyond the reach of classical
supercomputers and has been used to demonstrate quantum supremacy. We propose a method to classically
solve this problem by contracting the corresponding tensor network just once, and is massively more
efficient than existing methods in generating a large number of uncorrelated samples with a target fidelity.
For the Sycamore quantum supremacy circuit with 53 qubits and 20 cycles, we have generated 1 × 106

uncorrelated bitstrings s which are sampled from a distribution P̂ðsÞ ¼ jψ̂ðsÞj2, where the approximate
state ψ̂ has fidelity F ≈ 0.0037. The whole computation has cost about 15 h on a computational cluster with
512 GPUs. The obtained 1 × 106 samples, the contraction code and contraction order are made public. If
our algorithm could be implemented with high efficiency on a modern supercomputer with ExaFLOPS
performance, we estimate that ideally, the simulation would cost a few dozens of seconds, which is faster
than Google’s quantum hardware.
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The sampling problem of quantum circuits has been
proposed recently as a specific computational task to
demonstrate whether programmable quantum devices can
surpass the ability of classical computations, also known as
quantum supremacy (or quantum advantage) [1–10]. As a
milestone, in 2019, Google released the Sycamore quantum
circuits to realize this approach for the first time [1]. The
Sycamore quantum supremacy circuits contain 53 qubits
and 20 cycles of unitary operations. Google has demon-
strated that the noisy sampling task with fidelity f ≈ 0.002
can be achieved experimentally using the quantum hard-
ware in about 200 sec, while they estimated that it would
take 10000 yr on modern supercomputers.
However, the computational time estimated by Google

relies on a specific classical algorithm, the Schrödinger-
Feynman algorithm [1,2,11], rather than a theoretical
bound that applies to all possible algorithms. So, in
principle, there could exist algorithms that perform much
better than the algorithm used by Google, rejecting the
quantum supremacy claim. Indeed, in this Letter, we
provide such an algorithm based on the tensor network
method.
There have been great efforts to develop more efficient

classical simulation algorithms. IBM has estimated that the
53-qubit state vector of the Sycamore circuits can be stored
and evolved if one could employ all the RAM and hard
disks of the Summit supercomputer. However, it is appa-
rently unrealistic to do such a numerical experiment.

Recently, a variety of methods have been proposed for this
problembased on computing a single amplitude or a batch of
amplitudes [5,12–15] using tensor network contractions. In
particular, [15] proposed contracting the corresponding
tensor network 2000 times to obtain 2000 batches of
amplitudes (each batch contains 64 correlated bitstrings),
then sample 2000 perfect samples from the batches and mix
them with 998000 random bitstrings to obtain samples with
linear cross entropy benchmark (XEB) around 0.002.
However the computational cost of such simulation is still
too large, and the experiment has not been realized yet.
Another attempt to pass the XEB test on the Sycamore

quantum supremacy circuits is the recently proposed big-
head approach [16], which can obtain a large number of
correlated samples. Using 60 GPUs for 5 days, the authors
of [16] generated 1 × 106 correlated samples with XEB
0.739, passed the XEB test. We also noticed that very
recent works [17,18] implemented this approach on a
supercomputer, and heavily reduced the running time for
obtaining a batch of correlated samples. However, if the
target of the simulation is not only passing the XEB test but
also satisfying the constraint of obtaining uncorrelated
samples, as in the Sycamore experiments, then one needs to
repeat the contraction thousands of times, making the
computation cost unaffordable in practice. Moreover, a
recent work [19] studied a particular method for obtaining
high (average) XEB values but low fidelity, illustrating
limitations of XEB as a measure for fidelity.
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In this Letter, we propose a tensor network approach to
solve the uncorrelated sampling problem for the Sycamore
quantum supremacy circuits. Our method is based on
contractions of the three-dimensional tensor network Ĝ
(Fig. 1) converted from the quantum circuit. A single
contraction of Ĝ produces fψ̂μ

i g with i ¼ 1; 2;…L and
μ ¼ 1; 2;…l, representing amplitudes of L (randomly
chosen) uncorrelated groups of bitstrings with each group
containing l correlated bitstrings. Since fψ̂μ

i g contains a
small portion of entries of a approximate state ψ̂ with
fidelity F, we term it as a sparse state. Based on the sparse
state, we do importance sampling to obtain one sample
from a group, finally generating L uncorrelated samples
from the approximate probability P̂ ¼ jψ̂ j2, i.e., L approxi-
mate samples from the output distribution of the quantum
circuit with fidelity F.
Our algorithm is massively more efficient than existing

algorithms in generating a large number of uncorrelated
samples. On the Sycamore circuits with n ¼ 53 qubits and
m ¼ 20 cycles, we have successfully generated L ¼ 220

approximate samples with fidelity F ≈ 0.0037 in about 15 h
using 512 GPUs. We remark that to the best of our
knowledge this is the first time that the sampling problem
of the Sycamore quantum supremacy circuits (with fidelity
larger than Google’s hardware samples) with n ¼ 53 qubits
and m ¼ 20 cycles is solved in practice classically.
Method.—The quantum circuits U can be regarded as a

unitary tensor network G with matrices (corresponding to
single-qubit gates) and four-way tensors (corresponding to
two-qubit gates) connecting to each other. For the Sycamore
circuits where the qubits are placed on a two-dimensional
layout, the corresponding G is a three-dimensional tensor
network as illustrated in Fig. 1. The initial state (the leftmost
layer) and the final state (the rightmost layer) act as two
boundary conditions to G. The initial state is always a
product state so acts as a set of vectors; while the final state is

represented as either a giant tensor or a set of small tensors
(including vectors) depending on how many amplitudes we
request in contraction of G.
If we request all amplitudes of the final state, the final

state acts as a giant tensor with size 2n, which requires a
storage space exponential to the number of qubits. If we
request only one amplitude of the final state, then the
boundary is a product state and acts as a set of vectors.
Another case considered in the literature is the batch
contraction [15,16], which requests amplitudes for l corre-
lated bitstrings and gives a tensor with size l as the final
boundary condition for G. In this Letter our target is
different: we request a large number of amplitudes for
uncorrelated bitstrings, from single contraction of Ĝ, a
slightly perturbed version of G.
Tensor network Ĝ is created by breaking (removing) K

edges (connections) in G. The edge breaking is imple-
mented by inserting E ¼ ð1

0
Þ ⊗ ð1

0
Þ in between the two

tensors that the edge is connecting. In this Letter, we select
K edges from input indices of K=2 two-qubit gates.
Pictorially it represents as drilling K=2 holes in the
three-dimensional graphical representation of Ĝ as shown
in Fig. 1. The position of holes are determined such that
contracting Ĝ is much easier than contracting G, but with
the price of decreasing the fidelity. The amount of
decreased fidelity can be estimated using the expression
of E as a specific Pauli error matrix E ¼ 1

2
I þ 1

2
σz, with

I ¼ �
1
0
0
1

�
and σz ¼

�
1
0

0
−1
�
. The effect of the edge breaking

can be understood as breaking the system into a summation
of two subnetworks. The first subnetwork is a copy of the
original one which preserves the information of the original
final state, while the second subnetwork with the action of
σz completely destroys the information of the original final
state. Since the weight of each subnetwork is 1=2 [11], one
then estimates that each edge breaking decreases the
fidelity F by a factor of 1=2. After breaking K edges in
G, we arrive at Ĝ. If we contract Ĝ and obtain a full
amplitude state vector ψ̂, it would be an approximation to
the final state ψ of G, with fidelity estimated as FK ≈ 2−K .
The simulation method based on tensor network con-

tractions can be regarded as Feynman’s path-integral
approach, because the tensor contractions effectively
sum over an exponential number of paths which are
considered to be orthogonal to each other, hence contrib-
uting equally to the obtained amplitudes. Under this
viewpoint, the hole drilling in G can be understood as
omitting some paths in the path-integral approach, sum-
ming over only a fraction of 2−K paths, giving fidel-
ity FK ≈ 2−K.
In this Letter we only request the sparse state, the

amplitudes for L × l bitstrings which are grouped into L
groups with each group containing l correlated bitstring
amplitudes (in the practical L ¼ 220 and l ¼ 26). They are
given according to a generation process in advance and
kept fixed during the contraction.

FIG. 1. Pictorial representation of the three-dimensional tensor
network corresponding to the Sycamore quantum circuit with
n ¼ 53 qubits and m ¼ 20 cycles. There are 4 holes in the tensor
network designed for reducing the contraction complexity. Each
hole is created by breaking two edges in a selected two-qubit gate
and the companion edges, i.e., removing the entire two-qubit
gate, as described in the main text. The result of contracting the
three-dimensional tensor network using the sparse-state method
is L ¼ 220 groups of amplitudes, each group contains l ¼ 26 ¼
64 correlated bitstring amplitudes. That is, we have computed
approximate amplitudes for 226 ¼ 67, 108, 864 bitstrings and
finally sampled 220 uncorrelated bitstrings from them.
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However, contracting Ĝ to arrive at the L × l size sparse
state is a very difficult task, and the space complexity of the
contraction would be much larger than L × l. To solve the
problem we extend the big-head algorithm proposed in
[16]. In the big-head algorithm, the three-dimensional
tensor network is cut into two parts, Ĝhead whose contrac-
tion cost dominates the whole computation, and Ĝtail which
contains all the qubits in the final state and can completely
reuse the contraction results of Ĝhead for computing all the
requested amplitudes. In this Letter, the big-head method is
extended to work with the sparse state (rather than a batch
of correlated bitstrings in [16]). To this end, we need to
balance the computation cost of Ĝhead and the cost of Ĝtail.
The contraction results of Ĝhead is a vector vhead, with size
much larger than our storage limit, so in practice, we
enumerate k entries in vhead, that is, making 2k slices of the
vhead, each slice has size 229. Given each slice of vhead, the
Ĝhead is contracted with a good contraction order and local
dynamic slicing, similar to [16].
The boundary condition given by the sparse state is

heavier to deal with than the boundary conditions of Ĝhead.
We proposed a new zigzag method for finding a good
contraction order. The method starts at the beginning
boundary of Ĝtail, contracting neighboring tensors in a
complexity-greedy manner all the way towards the boun-
dary of the sparse state, then turns around to contract
greedily the tensors and come back to the beginning
boundary. The process is repeated until all the tensors in
Ĝtail are contracted, and the sparse state fψμ

i g is obtained.
The spirit of the zigzag contraction order is to make use of
both boundaries to reduce the space and time complexity of
contraction. For more details about the head-tail splitting of
the circuits, the sparse-state contraction method, and slicing
technique, please refer to the Supplemental Material [20].
In the Sycamore circuits, two-qubit unitary transforma-

tions are parametrized using the fSim gates

fSimðθ;ϕÞ ¼

2
66664

1 0 0 0

0 cos θ −i sin θ 0

0 −i sin θ cos θ 0

0 0 0 e−iϕ

3
77775
: ð1Þ

Specifically, the parameters in Google’s experiments [1]
are tuned to θ ≈ π=2 in order to keep the decomposition
rank equal to 4 with a near-flat spectrum, that is, the
singular values of the 4 × 4 matrix obtained by reshaping
the fSim gate are almost identical [1]. This setting signifi-
cantly increases the cost of classical simulations when
compared with controlled-Z gates which has decomposi-
tional rank 2, in exact simulations and in approximate
simulations [21,22].
However, we observe that in our approach there are two

situations that we can explore the low rank structures. (i) In
the hole drilling, when the two input indices (α and β) of the

fSim gate are cut, i.e., applying two Pauli errors gate as
A ¼ ð½1

0
0
0
� ⊗ ½1

0
0
0
�Þ · fSimðθ;ϕÞ, as illustrated in Fig. 2 top. It

evaluates to a rank-one matrix B ¼ ½1
0
0
0
�, hence the fSim

gate can be replaced by two (1,0) vectors without decreas-
ing fidelity. (ii) In enumerating k entries of vhead as well as
in the slicing process, fixing an index is regarded as
breaking one input edge in the tensor diagram as illustrated
in Fig. 2 bottom (e.g., the top left edge γ of tensorD is cut),
giving a three-way tensor E. Although the decompositional
rank of E on the bottom right index ω is 2, the correspond-
ing squared singular values, ½sin2ðθÞ þ 1; cos2ðθÞ�, are
heavily imbalanced in the Sycamore circuits with
θ ≈ π=2. In this way we can do a rank-one approximation
by dropping the singular vectors corresponding to the
squared singular value cos2ðθÞ. This rank-one approxima-
tion decreases the fidelity approximately by a factor
½sin2ðθÞ þ 1�=2, while effectively break another edge ω,
which we term as the companion edge in the tensor
network. For total k selected slicing edges in the tensor
network, we do the rank-one approximation for associated
fSim gates, cutting k associated companion edges. This
decreases the fidelity F by a factor

Q
k
i¼1½sin2ðθiÞ þ 1�=2.

After contracting Ĝ using the methods we have intro-
duced above, the sparse state fψ̂μ

i g is obtained, which are
selected from 2n entries of a state ψ̂ , with fidelity to the true
state estimated as Festimate ≈ 2−K

Q
k
i¼1½sin2ðθiÞ þ 1�=2.

Since the sparse-state fψ̂μ
i g is composed of L groups

and each group contains l amplitudes, we use a Markov
chain to sample one bitstring out of l amplitudes in each
group using the Metropolis algorithm [23], producing L
samples, which is considered as unbiased samples from ψ̂ .
We also note that if jψ̂ j2 follows the Porter-Thomas
distribution [8,24,25] (as we verify empirically in
Fig. 3), we can use the frugal sampling [1,11], which is
much faster and guaranteed to give near-perfect samples
with l ¼ 64. We remark that to obtain L uncorrelated
samples, only groups need to be independently and
randomly generated, it is not necessary to maintain uncor-
related bitstrings inside of each group [26]. The validations

(a) (b) (c)

(d) (e) (f)

FIG. 2. Two situations where we can explore the low-rank
structures. (Top)When two indices α, β are pinned to 0 for the fSim
gate. The result is a rank-onematrixB effectively equals to a scalar
c ¼ 1 in the tensor network. (Bottom) When one index γ of an
fSim gate is pinned, the resulting tensor E has decompositional
rank 2 butwith imbalanced singular values ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðθÞ þ 1

p
; cosðθÞ�

with θ ≈ π=2.
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of our approximate sampling method using smaller
Sycamore circuits can be found in the Supplemental
Material [20].
Results.—We focus on the Sycamore circuits with n ¼

53 qubits, m ¼ 20 cycles, sequence ABCDCDAB, which
have been used to demonstrate the quantum supremacy
based on the estimated 10000 yr for classical simulations
[1]. We first simplify the tensor network by contracting
order-one and order-two tensors into their neighbors,
resulting in a tensor network with n ¼ 455 tensors. To
arrive at Ĝ, we chose K ¼ 8 edges to break, they are
associated with 4 fSim gates. Using the low-rank structure,
we completely remove the two-qubit gates by introducing
proper Pauli error gates. This gives 4 holes marked in
Fig. 1. This approximation decreases the fidelity by a factor
2−8. Then the tensor network is divided into two parts, the
head part Ĝhead and the tail part Ĝtail.
We introduce 6 slicing edges in contracting Ĝhead. The

space and time complexity are 230 and 2.3816 × 1013,
respectively. Contracting the Ĝhead results in a tensor vhead
of size 245, which we cannot store, so we enumerate 16
entries of the vhead, creating 216 subtasks of tensor network
contraction, each of which corresponds to a configuration
of 16 binary variables.
In each subtask, vhead is sliced to a tensor with size 229,

which works as a boundary for Ĝtail. For the Sycamore
circuits with n ¼ 53 qubits and m ¼ 20 cycles, we set L ¼
220 and l ¼ 26, i.e., organizing the requested bitstrings to
220 independent groups, each of which contains 26 bit-
strings. It acts as another boundary of Ĝtail. In contracting
Ĝtail, we introduces 7 local slicing edges, and the space and
time complexity in our sparse-state contraction scheme are
230 and 2.9425 × 1013, respectively. The overall time
complexity of the entire computation (for finishing 216

subtasks) is 3.489 × 1018, which is slightly lower than the
previous work [16] in computing a large batch of correlated
bitstring amplitudes, and [15] in computing a small batch of
correlated bitstrings.
In contracting Ĝtail, there are 5 slicing edges associated

with a companion edge. Together with the 16 companion
edges in enumerating vhead, there are totally k ¼ 21
companion edges. We do further low-rank approximations
on the k ¼ 21 associated fSim gates, decreasing the fidelity
by a factor

Q
21
i¼1½sin2ðθiÞ þ 1�=2 ≈ 0.9565, where θi in the

equation denotes the parameters of involved fSim gates.
Together with the fidelity decreasing introduced in hole
drilling, the final fidelity is estimated as

Festimate ¼ 2−8 × 0.9565 ≈ 0.0037: ð2Þ

To increase the GPU efficiency, the branch merge
strategy [16,27] was adopted during the contraction.
After branch merging, the GPU efficiency is 31.76% for
Ĝhead and 14.27% for Ĝtail, the overall efficiency is 18.85%.
We use the Complex64 as data type in contraction. The

contraction time of Ĝhead for one subtask is around 112 sec
and that of Ĝtail is around 315 sec, summing to 427 sec for
completing a single subtask. The entire simulation with 216

subtasks is finished in about 15 h using a computational
cluster with 512 GPUs. Detailed data about the complexity,
estimated fidelity, GPU efficiency are listed in the
Supplemental Material [20].
By summing over 216 paths, Ĝ is contracted. The results

are 226 bitstrings amplitudes grouped into 220 uncorrelated
groups corresponding to partial bitstrings x ∈ f1; 0g47 that
are uniformly and randomly selected. Each group is
composed of 26 ¼ 64 correlated bitstrings corresponding
to 6 open qubits. As a sanity check, we compute the
squared normN ¼ P

220

i¼1

P
64
μ¼1 jψ̂μ

i j2 of the sparse-state by
summing only a fraction of total paths, and compare to the
expected fidelity with partial summation (i.e. the fraction of
the paths). The result are shown in Fig. 3 right, where we
can see that they coincide to each other. Using the norm of
the sparse state we can estimate the normalization factor of
the approximate distribution as 227N , and compute the
approximate probability of bitstrings. The histogram of the
probability is plotted in Fig. 3 left, where we can see that it
fits very well to the Porter-Thomas distribution.
Finally, we generate 220 uncorrelated bitstrings from the

distribution of the sparse state using theMCMC importance
sampling. The other method that we have tried is the frugal
sampling, which is guaranteed to work well [1,11] as the
distribution fits to the Porter-Thomas distribution.
Discussions.—We have presented a tensor network

method for solving the approximate (uncorrelated) sam-
pling problem of the Sycamore quantum circuits which was
thought to be impossible for classical computations. Using
our algorithm the simulation for the Sycamore circuits with
n ¼ 53 qubits and m ¼ 20 cycles is completed in about
15 h using 512 V100 GPUs. There are several places
that the proposed algorithms can be further speed up. First,

FIG. 3. Left: Histogram of approximate bitstring probabilities
pðsÞ ¼ jψ̂ðsÞj2=N s for 226 bitstrings obtained from the Syca-
more circuits with n ¼ 53 qubits and m ¼ 20 cycles. N s is the
norm factor and N ¼ 2n. The estimated fidelity ψ̂ðsÞ to the true
final state ψðsÞ is F ≈ 0.0037. The red line denotes the Porter
Thomas distribution. Right: Comparison between the estimated
fidelity (blue lines) and the norm factor of ψ̂LðsÞ obtained by
summing over a fraction of paths.
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our contraction algorithm is straightforwardly implemented
using PYTORCH. We expect that using a library that is more
suitable for tensor contractions, such as the cuQuantum
[28], the computational efficiency can be greatly increased.
Second, in recent days a modern supercomputer could
achieve a performance of ExaFLOPS (1018 floating-point
operations per second). If our simulation of the quantum
supremacy circuits (with about 2.79 × 1019 floating-point
operations without branch merging) can be implemented in
a modern supercomputer with high efficiency, in principle,
the overall simulation time can be reduced to a few dozens
of seconds, which is faster than Google’s hardware
experiments.
The Sycamore circuit files are retrieved from [29], and

the circuits are loaded with Cirq [30] script contained in the
data repository and converted to the tensor network G. Our
contraction code is implemented using Pytorch (version
1.7.2) with cudatoolkit (version 10.1). The samples and the
contraction code together with the contraction orders and
slicing indices for reproducing our results are available at
[31]. The computation was carried out at the Cloud Brain I
Computing Facility at the Peng Cheng Laboratory and HPC
cluster of ITP, CAS.
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