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It has recently been established that clusterlike states—states that are in the same symmetry-protected
topological phase as the cluster state—provide a family of resource states that can be utilized for
measurement-based quantum computation. In this Letter, we ask whether it is possible to prepare
clusterlike states in finite time without breaking the symmetry protecting the resource state. Such a
symmetry-preserving protocol would benefit from topological protection to errors in the preparation. We
answer this question in the positive by providing a Hamiltonian in one higher dimension whose finite-time
evolution is a unitary that acts trivially in the bulk, but pumps the desired cluster state to the boundary.
Examples are given for both the 1D cluster state protected by a global symmetry, and various 2D cluster
states protected by subsystem symmetries. We show that even if unwanted symmetric perturbations are
present in the driving Hamiltonian, projective measurements in the bulk along with feed-forward correction
is sufficient to recover a clusterlike state.
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Introduction.—Symmetry-protected topological (SPT)
states [1–5] are gapped states of matter that cannot be
adiabatically connected to an unentangled product state
without breaking the protecting symmetry. It has been
recently realized that certain SPT states, and in some cases,
entire SPT phases, can be leveraged to perform measure-
ment-based quantum computation (MBQC) [6–9]. The fact
that these states cannot be smoothly connected to an
unentangled product state without breaking a global sym-
metry in many cases implies an adequate entanglement
structure of the state which is sufficient to perform MBQC.
So far, it is known that certain SPT phases host

computational power throughout the entire phase: any
state within that SPT phase can be used as a resource state
[10–20]. In one dimension, the canonical example is the
cluster state, defined as the unique state which satisfies
Zi−1XiZiþ1jψi ¼ þjψi on a spin chain. The state enjoys a
global Z2

2 symmetry and for any state within the same
SPT phase, arbitrary quantum gates can be performed by
choosing appropriate measurements, making the entire
SPT phase universal [17,18]. In higher dimensions, certain
fixed points (with possibly finite regions around those
fixed points) of SPT phases with global symmetries have
been found to be universal [16,19–22] for MBQC, but a
SPT state with global symmetry whose entire phase is
universal has yet to be found.
On the other hand, there has been increased interest in

subsystem symmetries due to their connections to fracton
topological order in three spatial dimensions [23–30].
Unlike global symmetries, subsystem symmetries only
act on a rigid subdimensional region, such as lines, planes
or even fractals. It was recently realized that if one instead
considers states protected by such symmetries, called

subsystem SPTs states[31–38], then there are indeed exam-
ples where the entire phase can be used as a universal
resource state [39–42]. Serendipitously, these examples are
again cluster states on various 2D lattices.
However, there seems to be a drawback for such a

convenient property. Although cluster states are easily
created by evolving a product state with, for instance, an
Ising Hamiltonian for a certain time [7], because the initial
and final states belong to different SPT phases, any
Hamiltonian evolution that relates the two in finite time
necessarily breaks the global(subsystem) symmetry [43,44].
Therefore, in experimental setups, unless the Hamiltonian is
prepared exactly, the resulting entangled state does not need
to be a SPT state, and its use as a resource state is not
guaranteed. We seem to come to the conclusion that in order
to exploit the universality of the entire SPT phase, one must
instead adiabatically prepare the resource state without
breaking the symmetry. Such preparation time scales at
least linearly in the system size.
In this Letter, we present a method to get around the

above argument. Our motivation can be traced back to the
seminal work of Thouless [45], where an evolution of a 1D
system under a symmetric Hamiltonian leaves the bulk
invariant after a certain period of time, but can “pump”
quantized amounts of charge from one boundary to
another. More recently, higher dimensional generalizations
of such a construction have been realized in the field of
Floquet SPTs phases [46–51], where in fact entire (sta-
tionary) phases of matter in one lower dimension can be
pumped to the boundary under a finite time evolution while
leaving the bulk invariant. Applying this concept, we are
able to start with a product state and evolve the system
with a Hamiltonian which respects the global(subsystem)
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symmetry of a 2D(3D) system in such a way that after a
fixed finite time—independent of the system size—a 1D
(2D) cluster state is created on the boundary, completely
uncoupled from the bulk (Fig. 1). To summarize, the
previous no-go argument only holds when the cluster state
is assumed to live strictly in the dimension of the defining
lattice. Because of additional ancillae coming from the extra
dimension of the bulk, the constraint is lifted, and we are
able to prepare cluster states both symmetrically and in
finite time.
With this setup, we can now take full advantage of the

universality of the entire phase. Conceptually, as long as the
driving Hamiltonian is modified by any small perturbation
that preserves the symmetry, the entangled state on the
boundary would still be symmetric and belongs to the same
phase as the cluster state. It is therefore still a universal
resource state. More realistically, it is possible that sym-
metric perturbations to the Hamiltonian leave the boundary
state coupled to the bulk after the evolution, but we further
demonstrate that by performing measurements and feed-
forward correction, we can recover a completely decoupled
boundary resource state.
The remainder of the Letter is organized as follows. We

first review the notion of cluster states and how they can be
viewed as SPT phases. Then, we show how a symmetric
2D Hamiltonian can be used to pump a 1D cluster state to
the boundary. This procedure is generalized to pump 2D
cluster states to the boundary of a 3D system using a 3D
Hamiltonian that respects subsystem symmetry. Lastly, we
discuss how to recover a clusterlike resource state in the
case that small but symmetric perturbations are added to
the Hamiltonian.
Cluster states.—Let j0i and j1i be Z basis states. Given a

graph G ¼ ðV; EÞ, a graph state [52] is the entangled state
jψi ¼ Q

ij∈E CZij ⊗i∈V jþii, constructed from initializing
with qubits in the X ¼ 1 eigenstate jþi ∼ j0i þ j1i at
each vertex and applying the controlled-Z operator
CZij ¼ ð−1Þninj , where ni ¼ ½ð1 − ZiÞ=2� is the number
operator, to every edge of the graph. Equivalently, the

graph state is the unique ground state of the stabilizer
Hamiltonian H¼−

P
i∈VXi

Q
jjðijÞ∈EZj, which is obtained

by conjugating Xi on each vertex by the circuit
Q

ij∈E CZij.
When the graph G also forms a lattice, the state is called

a cluster state. Cluster states are resource states that are
universal for MBQC in two or greater spatial dimensions
[8,53]. It was later realized that cluster states are examples
of SPT phases [31,32,54–56]. The 1D cluster state is
protected by a Z2

2 global symmetry, which flips the spins
on even and odd sites of the chain, respectively. On the
other hand, 2D cluster states are SPTs states protected by
subsystem symmetry. For example, on a square lattice, the
cluster state can be protected by symmetries which flip
spins on individual diagonal lines (Fig. 2), while on a
honeycomb lattice, it can be protected by fractal sym-
metries which only flip certain spins in the shape of
Sierpinski triangles [32,34] (Fig. 3). Furthermore, any state
in the same (subsystem) SPT phase as these cluster states
(called clusterlike states) can also be used as a universal
resource state [17,18,39–41].
Pumping SPTs protected by global symmetries.—To

design Hamiltonians whose time evolution pumps
SPT states to the boundary, we take inspiration from
Floquet SPTs phases for bosonic systems with unitary
symmetry G. The classification of Floquet SPTs phases
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FIG. 1. Time evolution by a symmetric three-body Hamiltonian
in the 2D bulk pumps a 1D cluster state to the boundary while
leaving the bulk invariant. Similarly, 2D cluster states can be
prepared at the boundary of a 3D bulk respecting the correspond-
ing subsystem symmetries. In both cases the preparation only
takes a finite time, independent of system size.

FIG. 2. The computational power of the 2D cluster state on a
square lattice is protected by spin-flip symmetries along indi-
vidual diagonal lines of the lattice.

FIG. 3. The 2D cluster state on the honeycomb lattice.
A generator of the fractal symmetries flips all the enlarged blue
spins which form a Sierpinski triangle. There is also another set of
fractal symmetry generators for the red spins.
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protected by G can be thought of as that of a static system
with symmetry G × Z where Z denotes time translation
[46–48]. In the language of group cohomology, we can use
the Künneth formula to write [57]

Hdþ1½G×Z;Uð1Þ� ¼Hdþ1½G;Uð1Þ�×Hd½G;Uð1Þ�. ð1Þ
The first factor classifies static G-SPTs phases, while the
latter attaches the time-translation symmetry action with
(d − 1)-dimensional G-SPTs states. It can therefore be
interpreted as a drive which pumps such G-SPT state to the
boundary per driving period. We can devise a Hamiltonian
to generate this Floquet unitary, which acts as the identity
in the bulk, but pumps the SPT phase to the boundary
while commuting with the symmetry. The idea is similar to
a coupled-layer construction: dividing our d-dimensional
system (hosting a boundary) into volume-filling “cells,”
the Floquet unitary is obtained by evolving a local
Hamiltonian that creates, in one Floquet period, a bubble
of the d − 1-dimensional SPT along the boundary of each
cell. The SPTs states cancel in the bulk, leaving only a
(d − 1)-dimensional SPT state on the boundary. Without
restrictions to the number of interactions required, the
pump for a general bosonic SPT state can be constructed
[49,59]. Here, we build on these works by reducing the
weight of the interactions required, focusing on 1þ 1D
SPT phases (since it is undetermined whether there
exist SPT phases protected by a global symmetry in
higher dimensions whose entire phase is universal).
Subsequently, we will turn to pumps for subsystem
SPTs phases in higher dimensions, which are new, and
for which a formal classification has not been put forward.
Pumping the 1D cluster state.—Let us demonstrate how

to prepare the 1D cluster state on the boundary of the Union-
Jack lattice respecting a global Z2

2 symmetry using only
three-body interactions, an improvement over previous
setups using four-body interactions [49,60,61]. We place
qubits on the vertices on the Union-Jack lattice, which is
three-colorable as red, blue, and green as shown in Fig. 4.
The global Z2

2 symmetry is defined via the action of its three
Z2 subgroups, which flip spins in the Z basis on two of the
three colors. Starting with the product state ⊗v∈V jþiv,
we will evolve our system with the following Hintermann-
Merlini Hamiltonian [63] for time π=4:

H ¼ −
X

Δ123

Z1Z2Z3; ð2Þ

where the sum is over triangles Δ123 of all orientations. This
Hamiltonian commutes with the Z2

2 symmetry.
To see the action of the resulting unitary, we expand

using Zi ¼ 1–2ni, and find

exp−i
π

4
Z1Z2Z3 ¼ e−i

π
4ei

π
2
ðn1þn2þn3Þeiπðn1n2þn2n3þn3n1Þ

∝ S1S2S3CZ12CZ23CZ31: ð3Þ

Hence, the local three-body term exponentiates to a
product of S ¼ eðπi=2Þn gates for each vertex and CZ gates
for each edge of the triangle. Taking the product of such
local unitaries for all triangles, each vertex is always acted
by either four or eight S gates, which cancel both in the
bulk and on the boundary. On the other hand, the CZ gates
cancel pairwise in the bulk, leaving (up to an overall
phase) exp−iHðπ=4Þ ∝ Q

ij∈∂M CZij, where ∂M denotes
the boundary spins of the lattice. Therefore this unitary
pumps the cluster state to the boundary.
Pumping subsystem SPTs.—We will now generalize the

results to prepare 2D cluster states. Note that such states can
already be prepared strictly in 2D in the presence of only
global symmetries. Nevertheless, they belong to the trivial
phase under such symmetries and thus we cannot exploit
the universality of the phase. Thus, we need the presence of
subsystem symmetries, which requires a 3D pump.
First, consider the FCC lattice with planar subsystem

symmetries defined as flipping spins in individual
(100), (010), or (001) planes. These planar symmetries
terminate as line symmetries on the boundary. Our driving
Hamiltonian will be a four-body tetrahedral Ising inter-
action [27]

ð4Þ

where each tetrahedron consists of a vertex along with
three adjacent face centers within the same cube. This
Hamiltonian commutes with the planar symmetries.
Evolving the product state with the above Hamiltonian
for time π=4, a similar calculation to Eq. (3) shows that
visually,

ð5Þ

where each dense edge of the tetrahedron denotes a CZ
gate. Taking the product over all tetrahedra in the bulk

FIG. 4. The Union-Jack lattice, with a global Z2
2 symmetry

defined as flipping spins on two of the three colors. The
Hintermann-Merlini three-body interaction Eq. (2) commutes
with this symmetry.
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(Fig. 5), we are left with CZ gates acting only along the
boundary. The cluster state on the (rotated) square lattice
(Fig. 2) can therefore be prepared on the (100), (010), and
(001) boundaries. In the Supplemental Material, we show
how to prepare the triangular lattice cluster state by instead
choosing the (111) boundary, and an alternative method to
prepare it on the boundary of the cubic lattice.
For our second example, we will prepare the 2D cluster

state on the honeycomb lattice. Our 3D bulk is a stack of
2D honeycombs with the two sites per unit cell labeled red
and blue, as in Fig. 3. The fractal symmetry action is
defined as acting the fractal symmetry of Fig. 3 simulta-
neously for every layer. Consider the following gates
defined for each blue and red vertex, respectively:

where each solid line denotes a CZ gate. This can be
expanded using CZij ¼ 1

2
ð1þ Zi þ Zj − ZiZjÞ to a sum of

at most five Z operators. The blue fractal symmetries
trivially commute with Vvb , while the red fractal symmetries
around any blue site only flip zero or two of the three
adjacent red sites within in each layer. Therefore, Vvb
commutes with the all the fractal symmetries and similarly
for Vvr. The product

Q
v VvbVvr ¼ e−iðπ=2ÞH over all vertices

v in the 3D lattice creates two cluster states on the top and
bottommost honeycomb layers, where H ¼ P

v Vvb þ Vvr .

Generalizing this, it is possible to similarly prepare any
2D fractal cluster state [32] generated by some 1D cellular
automaton. Here, we will give the underlying argument,
and prove it rigorously in the Supplemental Material [64].
For each blue site vb, define Vvb to be a product of CZ
operators connecting vb and the blue site directly above it to
its nearest neighbor red sites. Any symmetry generated by
the cellular automaton will only flip an even number of the
nearest neighbor red sites, so these gates are symmetric.
Analogously, for each red site vr, Vvr is a product of CZ
operators connecting vr and the red site directly below it to
its nearest neighbor blue sites. A product of such gates over
all vertices creates the cluster state at the top and bottom-
most layers, so the sum of these gates is exactly our desired
driving Hamiltonian.
Recovering clusterlike states in practical setups.—

Finally, we discuss how to take into account possible
undesirable perturbations that could be introduced into the
driving Hamiltonian when implemented in practice. These
perturbations could entangle the boundary state with the
bulk, rendering it useless as a resource state. However, we
will show that as long as these perturbations are small and
respect the symmetry, measurements in the bulk followed
by feed-forward correction can recover a resource state in
the same phase as the cluster state.
The basic idea is as follows. Suppose the driving

Hamiltonian is perturbed by symmetric local terms, whose
operator norms are bounded above by ϵkHk for some
small ϵ. To prepare the resource state, we choose a bulk
which is much larger than the support of possible pertur-
bations and initialize all qubits to the all jþi state. We now
consider how the terms possibly affect the cluster state on
the boundary after the evolution. (1) If the perturbation acts
purely in the bulk, then our resource state on the boundary
is not affected. (2) If the perturbation acts purely on the
boundary, then the state is perturbed symmetrically, which
will still be a valid resource state as long as ϵ is small
enough to keep it in the SPT phase. (3) If the perturbation
acts both in the bulk and on the boundary, then this term
could break the symmetry restricted to the boundary or
bulk separately, while preserving the total symmetry of the
whole system. In that case, the term will flip an odd
number of jþi states in the bulk to j−i. Therefore, we can
eliminate this error by performing a measurement in the X
basis for all qubits in the bulk, and if we measure an odd
number of j−i states along any bulk symmetry operator,
we apply single-spin flips X on the boundary to recover a
symmetric state.
Discussion.—Inspired by quantum pumps and Floquet

SPTs phases, we devised a 2D(3D) Hamiltonian which
respects the global(subsystem) symmetry extended into the
bulk, and showed that a product state driven by this
Hamiltonian for a fixed time independent of system size
prepares a 1D(2D) cluster state on the boundary. Then,
exploiting the universality of the entire symmetry-protected

FIG. 5. A unitary evolution of the tetrahedral Ising interaction
on the FCC lattice pumps the 2D cluster state to the entire
boundary (shown here for the (001) boundary). The local unitary
(blue tetrahedron) is generated by a four-body term in Eq. (5).
Planar symmetries (red and green) terminate on the boundary as
line symmetries.
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phase, we were able to guarantee the preparation of a
resource state even when the Hamiltonian is not imple-
mented exactly as long as perturbations are small and
symmetric. This was achieved by followup measurements
and feed-forward correction. We find it remarkable that
topology proves itself useful in methods beyond topologi-
cal quantum computing.
We conclude with prospects for future work.
From the point of view of topological phases, our

results entail that intrinsically interacting Floquet SPTs
phases protected by subsystem symmetry are at least
classified by subsystem SPTs phases in one lower dimen-
sion, identical to the global symmetry case. It would be
interesting to see whether this classification is complete.
Furthermore, gauging Floquet subsystem SPT phases can
give rise to Floquet fracton orders, where gapped exci-
tations with restricted mobility are dynamically enriched
into non-Abelian excitations via the Floquet drive [60].
There is also an intriguing connection between pumps
and transversal logical gates of the gauged topological
codes that deserve exploration in the case of subsystem
symmetries [64].
For future prospects for MBQC, we have presented

three(four)-body interactions to symmetrically prepare
one(two)-dimensional cluster states. It would be interesting
if this number can be further lowered given that universal
resource states can arise as ground states of two-body
Hamiltonians [10,11,13]. In addition, current computational
schemes implicitly assume the clusterlike states possess
translation invariance [17,39,41,42,56,77], which might not
hold for the states prepared using this method. It would be
crucial to devise a computational scheme which relaxes such
an assumption. Finally, we hope to investigate whether there
are experimental platforms where such global or subsystem
symmetries are inherent or arise as an approximate sym-
metry. Ultimately, finding a Hamiltonian that can be faith-
fully implemented experimentally, and a way to limit
perturbations to ones that respect the symmetry, would
provide a scalable and reliable method to create universal
resource states.
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