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We theoretically analyze recent experiments [Semeghini et al., Science 374, 1242 (2021)] demonstrating
the onset of a topological spin liquid using a programmable quantum simulator based on Rydberg atom
arrays. In the experiment, robust signatures of topological order emerge in out-of-equilibrium states that are
prepared using a quasiadiabatic state preparation protocol. We show theoretically that the state preparation
protocol can be optimized to target the fixed point of the topological phase—the resonating valence bond
state of hard dimers—in a time that scales linearly with the number of atoms. Moreover, we provide a two-
parameter variational manifold of tensor network states that accurately describe the many-body dynamics
of the preparation process. Using this approach we analyze the nature of the nonequilibrium state,
establishing the emergence of topological order.
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Introduction.—Quantum spin liquids (QSLs) arise from
the competition between classical frustration and quantum
fluctuations [1–6]. They are paradigmatic examples of
topological quantum matter [5,6], characterized by long-
range entanglement [7], hidden nonlocal order [5], and
exotic excitations [8]. Experimental preparation and control
of topological matter is of central importance not only for
understanding these many-body quantum phenomena but
also for realizing novel approaches to fault-tolerant topo-
logical quantum computation [7,9]. Recently, the onset of a
topological spin liquid has been observed in a quantum
simulator based on Rydberg atom arrays [10]. The key idea
is to exploit the Rydberg blockade mechanism [11–15] to
realize a dimer model, where spin liquid states are known to
emerge as equilibrium states at zero temperature [16–18].
These states share many similarities with a resonating
valence bond (RVB) state [19] of hard dimers, where the
role of a dimer is played by an excited Rydberg state on
the medial lattice of a kagome lattice [Fig. 1(a)]. While
the RVB state is an equal weight superposition of all the
maximal dimer coverings of the kagome lattice, the
Rydberg array can accommodate defects in the form of
uncovered kagome vertices. Theoretical analysis showed
that the presence of a topological phase depends delicately
on the precise details of the Rydberg interactions and atomic
positions [11]. Remarkably, experiments showed that robust
signatures of quantum spin liquids appear using quasiadia-
batic detuning sweeps employed in Ref. [10], even in
regimes where quantum spin liquids are not expected to
be stable as the ground state. Understanding the dynamical
preparation process, the robustness of the emerging state, the

role of the defects, and the extent to which they can be
reduced is crucial for determining the physical properties of
the nonequilibrium state as well as its potential utility for
topological quantum information processing.
In this Letter, we investigate the state produced through

the quasiadiabatic sweep by simulating the quantum
dynamics via exact and variational methods. We show that
the defect-free RVB state can be prepared with high fidelity
in a time that scales linearly with the number of atoms. To
understand the nature of the defects generated during the
state preparation protocol utilized in the experiments [10],
we introduce a novel tensor network (TN) ansatz. We
demonstrate that it accurately describes the entire many-
body dynamics of the preparation process, and we analyze
the resulting phase diagram via TN techniques. The latter
allows us to study the properties of the nonequilibrium state
on system sizes comparable to experiments [10]. By
computing several witnesses, including nonlocal order
parameters [20,21] and topological entanglement entropy
[22,23], we establish the presence of an extended region in
parameter space that is adiabatically connected to the RVB
state and hosts topological order.
Model Hamiltonian and RVB state preparation.—The

Rydberg atom quantum simulator of Ref. [10] consists of
neutral atoms optically trapped in fixed positions on the
links of a kagome lattice. Optical transitions between the
ground state jgi and the excited Rydberg state jri of each
atom are controlled via a two-photon process with Rabi
frequency Ω and detuning Δ. Excited Rydberg states
interact through van der Waals potential. The effective
Hamiltonian is [24,25]
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H ¼ Ω
2

X

i

σxi − Δ
X

i

ni þ V
X

i>j

ninj
ji − jj6 ; ð1Þ

where σxi ¼ jgiihrj þ jriihgj and ni ¼ jriihrj. The param-
eter V is tuned by varying the lattice spacing, and its
magnitude determines the blockade radius Rb ¼ ðV=ΩÞ1=6.
The interactions effectively suppress simultaneous occu-
pancy of excited Rydberg states at distance r ≤ Rb.
Numerical calculations are performed enforcing this con-
straint exactly on periodic clusters at Rb ¼ 2a, where a is
the minimum distance between the atoms. Moreover, we
neglect longer-range tails of the interactions at r > Rb
[Fig. 1(a)]. The effect of the tails and of a relaxed blockade
constraint is described in the final part of this Letter. The
phase diagram of the simplified model hosts three phases:
trivially disordered, topologically ordered, and trivially
ordered as Δ increases [11]. These three phases can be
identified from the exact diagonalization calculations
plotted in Fig. 1(c). The upper panel shows two clear
peaks in the ground state fidelity susceptibility F ¼
ð1 − jhGSðλÞjGSðλþ dλÞijÞ=dλ that signal an intermediate
phase, characterized by high overlap (≃0.7 for N ¼ 48
atoms) with the RVB state.

We first focus on state preparation protocols depicted in
Fig. 1(b). The initial state is the vacuum, where all the
atoms are in their ground states. The driving field is turned
on at fixed detuning Δ0 and Ω increases until it reaches its
maximum value (which sets our unit of energy and time).
The detuning is then increased from Δ0 to Δ1. Finally, Ω is
switched off at fixed detuning Δ1. The durations of the
three stages of the sweep are T1, T2, T3, respectively, and
the total time is T. These parameters can be tuned at will,
and we choose T1 ¼ T3 ¼ 0.1T, T2 ¼ 0.8T, Δ0 ¼ −5, and
Δ1 ¼ 1.5 in units of the maximum Rabi frequency. The
final result moderately depends on the parameter Δ1, while
it is mildly affected by the others [26]. Figure 1(d) shows
the overlap of the final state with the defect-free RVB state
as a function of the total time T. The large and small T
regimes are characterized by small overlap with the RVB
state. In the former, one recovers the adiabatic limit, where
the final state is a valence bond solid (VBS), i.e., the ground
state at large detuning [11]. In the latter, the high sweep rate
creates a high density of defects on top of the maximal
density subspace. Remarkably, at intermediate T the
prepared state reaches 0.99 fidelity with the RVB state
forN ¼ 48 atoms. The maximal overlap with the RVB state
is obtained at a time T� that scales linearly with system size
N, as it is evident from Fig. 1(d), where the overlap is
plotted as a function of T=N. We note that RVB fidelities of
the dynamically prepared state exceed the ground state ones
by almost 2 orders of magnitude [Figs. 1(c) and 1(d)].
Ansatz for the preparation dynamics.—We now expand

our focus beyond the analysis of the final state at the end of
the sweep, and aim at developing an understanding of the
dynamics of the system during the state preparation proto-
col. We are particularly interested in regimes where the
dynamics is not adiabatic and the resulting density of
monomers is not vanishingly small. For this we find it
convenient to slightly modify the state preparation protocol,
to the one depicted in the inset of Fig. 2(a): after initially
switching on Ω, the detuning is linearly increased until the
end of the process, i.e., we set T3 to zero [cf. Fig. 1(b)]. We
focus on the state generated at intermediate values of the
detuning during this preparation protocol. Similar to the
previous section, we will use the total sweep time T as a
parameter to interpolate from a sudden quench to a perfectly
adiabatic dynamics where the system is in the instantaneous
ground state. To describe the state of the system during this
dynamics we introduce the following variational ansatz:

jϕðz1;z2Þi¼NP
�
⊗
N

i¼1
ð1þ z2σ

þ
i Þð1þ z1σ−i Þ

�
jϕ0i; ð2Þ

where z1; z2 ∈ C. Here, jϕ0i is the equal-weight super-
position of configurations corresponding to defect-free
dimer covering, i.e. the RVB state, and P is the projector
on the blockade-constraint satisfying sector of the Hilbert
space, σ−i ¼ jgiihrj, σþi ¼ jriihgj and N is a normalization

(a) (b)

(d)(c)

FIG. 1. (a) Mapping between a dimer model on the kagome
lattice and the Rydberg atoms system on the ruby lattice. When
Rb ≳ 2a (shaded red circle) the Rydberg constraint is equivalent
to the dimer constraint. (b) Schematic representation of the
adiabatic state preparation protocol. The vertical gray lines
separate the three stages of the preparation process: ramp-up
of Ω and Δ, and ramp-down of Ω. (c) Top: ground state fidelity
susceptibility F ¼ ð1 − jhGSðλÞjGSðλþ dλÞijÞ=dλ with λ ¼
Ω=Δ and dλ ¼ 0.0025. Bottom: RVB overlap with the ground
state of the Hamiltonian Eq. (1). (d) Overlap between the
dynamically prepared state and the RVB state as a function of
the total sweep time T rescaled with the number of atoms N, for
Δ0 ¼ −5, Δ1 ¼ 1.5, T1 ¼ T3 ¼ 0.1T, and T2 ¼ 0.8T.
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constant.We allow the twovariational parameters z1, z2 to be
complex to capture relative phases between fixed density
subspaces. To understand this manifold of states it is
instructive to consider the limiting cases. In one limit, where
z1 ¼ ∞ and z2 ¼ 0, the state reduces to the trivial vacuum
state, i.e., the initial state of the experimental state prepa-
ration protocol. In another limit, when z1 ¼ z2 ¼ 0, the state
is simply the RVB state. In the vicinity of this point, the
parameters z1, z2 control the properties of defects on top of
the RVB state. These defects are monomers, i.e., vertices of
the kagome lattice that are not covered by a dimer.
Specifically, a finite value of the parameter z1, results in
the creation of nearest-neighbor monomer pairs that are
created by removing a dimer from a dimer covering. The
value of z1 controls the density of such pairs.A finitevalue of
z2 effectively allows these monomer pairs to separate,
introducing pairs with larger intrapair distances. Finally,
in the limit when z1 ¼ ∞, all monomers are uncorrelated
and their density is set by z2. This last limiting case has been
previously employed in variational studies of ground states
for Rydberg atom arrays on the square lattice, and its norm
maps to a classical partition functionwith localweights [28].
An important feature of the state jϕðz1; z2Þi is that it is a TN
state of bond dimension 4 for all z1, z2. This follows from
the observations that the RVB state is a TN state of bond

dimension 2, and P is a TN operator with the same bond
dimension.We note that expectation values for this state can
be computed exactly by the contraction of a tensor network
of bond dimension 8 [26].
We demonstrate the effectiveness of the ansatz Eq. (2) in

Fig. 2(a), where we plot the optimized overlap with the
dynamically evolving state for various total sweep times T
(solid lines) in a periodic cluster of N ¼ 36 atoms [26]. The
dashed line denotes the optimized overlap with the instan-
taneous ground state, which corresponds to a fully adiabatic
sweep with T ¼ ∞. The shaded red region indicates the
topological phase in the ground state phase diagram. Our
ansatz best describes the ground state in a neighborhood of
the transition point between topological and disordered
phases, atΔ=Ω ≃ 1.4. This is expected, as the ansatz Eq. (2)
does not break any lattice symmetry, and as such does not
include the VBS ground state at large detuning, causing a
suppression of the overlap as the VBS phase is approached.
During the preparation dynamics, the highest overlaps with
the variational state are obtained for intermediate T.
Figure 2(b) shows that the fidelity slowly decreases with
the number of atoms, but remains impressively large for all
the system sizes considered (> 0.99 for N ¼ 48 atoms).
Similar to what we observed for the pure-RVB preparation
protocol, the total sweep time for which maximal fidelities
are reached increases linearly with N. In Fig. 2(c) we plot
the magnitude of the optimal values for the two variational
parameters, for the fully adiabatic sweep (dashed line) and
the optimal sweep rate for N ¼ 36.
These optimal values are to be located in the state phase

diagram reported in Fig. 3(a) that shows the derivative of
the density of Rydberg excitations computed via TN
methods on an infinite cylinder with circumference of
length 12 links of the kagome lattice (L ¼ 6 tensors) [26].
The presence of a peak in the derivative points at two
distinct phases: an RVB-like phase and a trivial phase when
z1, z2 are small and large, respectively. A closer inspection
of the scaling of the peak with the length of the circum-
ference [26] confirms a continuous phase transition sepa-
rating a topological phase, connected to the RVB state, and
a trivial phase connected to the vacuum. We demonstrate
that the latter has topological order by showing in Fig. 3(b)
the topological entanglement entropy γ of the state Eq. (2)
on a periodic cluster of N ¼ 48 sites, obtained from γ ¼
SAB þ SBC þ SAC − SA − SB − SC − SABC [22,23], where
SX is the entanglement entropy of the subsystem X, see
Fig. 3(c). A value close to ln 2 signals Z2 topological order
in the region conntected to the RVB point. To further
corroborate the topological nature of the high-density
phase we compute the Bricmont-Frölich-Fredenhagen-
Marcu (BFFM) [20,21] order parameters, as defined in
Ref. [11]. These order parameters are defined on a loop of
length l and, in a topologically ordered phase, they vanish
when l → ∞. In Fig. 3(c) we plot the diagonal and
off-diagonal BFFM order parameters obtained from hex-
agonal loops of perimeter l ¼ 18 links of the kagome

(a)

(b) (c)

FIG. 2. (a) Overlap between the dynamically prepared state
during the sweep (depicted in the inset) and the ansatz Eq. (2),
optimized over the variational parameters z1, z2 for various sweep
times T, for a periodic cluster of N ¼ 36 atoms. The dashed line
is the optimized overlap with the instantaneous ground state
(T ¼ ∞). The shaded red region delimits the topological phase in
the ground state. (b) Maximal overlap obtained during the sweep
when 1≲ Δ=Ω≲ 2, for different N, as a function of the total
sweep time rescaled by N [29]. (c) Optimal absolute values for
the variational parameters z1, z2 in the ansatz state during a
semiadiabatic sweep with T ¼ 103 (solid line) and on the ground
state (dashed line) for N ¼ 36.
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lattice on an infinite cylinder with L ¼ 6 [26]. The region
where both these observables are small coincides with the
conjectured topological phase. We checked that, in this
region, they vanish exponentially with increasing loop
length [26]. In Fig. 3(c) we compare the building blocks
of the BFFM order parameters, namely expectation values
of string operators Zo (Xo) and Zc (Xc) on open and closed
strings, computed during the preparation process and
obtained from the optimized ansatz Eq. (2) for a loop of
length l ¼ 6 [26]. We observe good agreements even for
short preparation times.
Effect of long-range interactions.—To study the state

preparation dynamics generated by the full Rydberg
Hamiltonian Eq. (1) we include long-range tails of the
Rydberg interaction and set Rb ¼ 2.4a. The maximal
interaction distance between two excited Rydberg states
is ji − jj ¼ ffiffiffiffiffi

13
p

a. Moreover, we relax the radius of the
hard constraint of Fig. 1(a) to one length unit, such that
each triangle has at most one dimer. While the relaxation of
the constraint notably improves the overlap with the RVB
state [26], the inclusion of long-range tails lifts the classical
degeneracy in the fully packed dimer coverings subspace
[30]. This fact generates a complex pattern of phases
between the maximal-density components of the prepared
state, yielding suppressed overlaps between the RVB state
and the state reached at the end of the sweep in Fig. 1(a).
We refer to [26] for a more detailed discussion of this issue,
and we stress here that high RVB fidelities are obtained
when only the absolute value of the components of the

prepared state is considered. Gaining a deeper understand-
ing of the effect of these phases and their control is crucial
for the experimental applicability of the preparation pro-
tocol discussed in the first part of this Letter.
We now focus on the ansatz Eq. (2) and compare it to the

state dynamically prepared at finite Δ=Ω. We note that the
constraint relaxation produces a non-negligible projection
of the latter on the subspace violating the dimer constraint
[10]. In an attempt to capture this constraint-violating
component, we remove the projector P in the overlap
optimization. The resulting state-phase diagram is qualita-
tively unchanged with respect to the one in Fig. 3 [26].
We plot in Fig. 4(a) the outcome of the optimization for a
periodic cluster of N ¼ 36 atoms, for various total sweep
times T (solid lines), and including the fully adiabatic
sweep (dashed line). The result is analogous to the one
depicted in Fig. 2(a) for the PXP model, where the smaller
maximal overlaps are to be compared with the much
larger Hilbert space dimension: 224 vs ≃217 for N ¼ 36.
Remarkably, the fidelity per site increases with increasing
N for the two system sizes considered [Fig. 4(b)].
Outlook.—We discussed dynamical preparation of topo-

logical spin liquids in Rydberg atom arrays. First, we
showed that the pure RVB state can be reached with
impressively high fidelity in a time that scales linearly
with the number of atoms. Although the optimal prepara-
tion times needed to reach the highest fidelities are
somewhat longer than those accessible in the current
experimental capabilities [31], further optimization, larger
Rabi frequencies, as well as improved coherence in experi-
ments could make defect-free RVB state preparation
feasible. We also showed that the nonequilibrium state
observed in [10] is well described by a two-parameter
family of TN states with small bond dimension. The latter
includes the topologically ordered RVB state and the
vacuum. We exploit this TN representation to study the
properties of the prepared state on unprecedentedly large

(a) (b)

(c) (d)

FIG. 3. (a) Derivative of the density with respect to the
parameter z1, computed from the TN representation of the ansatz
Eq. (2) on an infinite cylinder of circumference L ¼ 6 tensors.
(b) Topological entanglement entropy γ of the ansatz computed
on the finite cluster of N ¼ 48 sites depicted in the inset.
(c) Diagonal and off-diagonal BFFM order parameters on the
infinite cylinder of circumference L ¼ 6. (d) Expectation values
of open and closed string operators obtained during the dynami-
cal preparation (solid lines) and from the optimized ansatz (empty
markers) for N ¼ 36 and T ¼ 65.

(a) (b)

FIG. 4. (a) Optimized overlap between the ansatz Eq. (2)
(without projector P) and the state prepared through the sweep
depicted in the inset of Fig. 2(a) for different total sweep times T.
The dynamics is generated by the full Rydberg Hamiltonian
Eq. (1) with Rb ¼ 2.4a. (b) Maximal fidelity per site obtained
during the sweep as a function of the total sweep time T rescaled
by the number of atoms N.
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systems, and infer about the stability of topological order in
the thermodynamic limit. We find that our ansatz is fully
consistent with a topological spin liquid in a finite region in
parameter space. Our Letter clarifies the nature of non-
equilibrium state experimentally prepared in [10], and
provides the tools for performing large-scale classical
simulations that might serve as guidance for probing
topological quantum matter in future quantum simulator
experiments. These studies can be extended along several
directions. For instance, our approach can be used to
explore nontrivial dynamics of anyonic excitations as well
as the preparation of the other topologically degenerate
states that have a natural interpretation within the TN
framework [32]. Moreover, the dynamical preparation of
the pure RVB state is not limited to the ruby lattice
described in the present Letter. In particular, one can
explore if this method can be applied to other systems
with a ground state degeneracy growing exponentially with
the number of atoms (see, e.g., Ref. [33]). In such systems
dynamical preparation protocols can be potentially used to
engineer other kinds of exotic phases of matter in a wide
variety of lattice geometries.

We acknowledge useful discussions with I. Cong,
G. Giudice, N. Maskara, S. Sachdev, R. Samajdar, G.
Semeghini, R. Verresen, A. Vishwanath, and T. Zache.
This research was supported by the Army Research Office
(Grant No. W911NF-21-1-0367), the ERC Starting Grant
QARA (Grant No. 101041435), a discovery grant by the
Erwin Schrödinger Center for Quantum Science,
CUA, NSF, and DOE. G. G. acknowledges support from
the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence
Strategy–EXC-2111–390814868 and from the ERC grant
QSIMCORR, ERC-2018-COG, No. 771891.

Note added.—Recently, we became aware of a related
variational study of nonequilibrium topological state prepa-
ration, Ref. [34].
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