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Periodic lattices in hyperbolic space are characterized by symmetries beyond Euclidean crystallographic
groups, offering a new platform for classical and quantum waves, demonstrating great potential for a new
class of topological metamaterials. One important feature of hyperbolic lattices is that their translation
group is nonabelian, permitting high-dimensional irreducible representations (irreps), in contrast to abelian
translation groups in Euclidean lattices. Here we introduce a general framework to construct wave
eigenstates of high-dimensional irreps of infinite hyperbolic lattices, thereby generalizing Bloch’s theorem,
and discuss its implications on unusual mode counting and degeneracy, as well as bulk-edge
correspondence in hyperbolic lattices. We apply this method to a mechanical hyperbolic lattice, and
characterize its band structure and zero modes of high-dimensional irreps.
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Introduction.—Bloch’s theorem has been the foundation
of solid-state physics. From the concept of energy bands to
the blossoming field of topological insulators, everything
starts with how wave eigenstates are modulated by spatially
periodic potentials in crystals. The abelian nature of the
translation groups in crystals limits their representations to
one-dimensional (1D), i.e., the Bloch factor, eikr, greatly
simplifying the mathematical description of waves in
crystals.
New materials and structures with complex spatial order

beyond periodic lattices are being discovered, with a
particularly interesting class being hyperbolic lattices,
which have recently evolved from pure mathematical
concepts [1] to real materials realizable in the lab [2–
12]. These lattices are perfectly ordered in hyperbolic
space, i.e., space with constant negative curvature. A simple
example of a 2D hyperbolic lattice is the tiling of regular
heptagons where three heptagons meet at each vertex (i.e.,
the {7,3} tiling). The interior angle of a heptagon in a flat
plane is greater than 2π=3, leading to an obvious frus-
tration. This frustration is resolved on a hyperbolic plane,
where the interior angle is modified by the Gaussian
curvature. Interestingly, in contrast to limited choices of
regular lattices in Euclidean space, there are infinitely many
regular lattices in hyperbolic space, opening up a huge
space for unconventional symmetries and physics.
How to describe waves in hyperbolic lattices? In recent

studies, a range of intriguing features has been reported,
e.g., topological edge states [5,11], higher-genus torus
Brillouin zones (BZs) [6,9], and circuit quantum electro-
dynamics [2–4,12], outlining an exciting arena of new
theories. However, key questions still remain about the

fundamental principles of constructing wave eigenstates
from the symmetries of these hyperbolic lattices. As
mentioned above, the simple form of the Bloch factor
comes from the abelian translation group in Euclidean
space. In hyperbolic lattices, in contrast, translations form
an infinite nonabelian group, calling for high-dimensional
irreducible representations (irreps). How to construct waves
of these high-dimensional irreps, and the fundamental
physics of the resulting waves, remain open questions.
An alternative way to demonstrate the necessity of high-
dimensional irreps in hyperbolic lattices is the scaling of the
number of wave modes with the system size. A Euclidean
lattice of linear size L with n degrees of freedom (d.o.f.s)
per unit cell has n bands in reciprocal (k) space, and the
number of points in the first BZ is LD (where D is the
spatial dimension), making the number of d.o.f.s in real
space and k space equal. In a hyperbolic lattice, however,
the number of unit cells grows exponentially with L,
leading to OðeLÞ wave modes, which is much greater than
the number of points in the first BZ. As we analyze in this
Letter, this indicates that a sequence of high-dimensional
irreps is needed to define a complete basis of waves on
hyperbolic lattices at large L.
In this Letter, we introduce a generalized Bloch’s

theorem for high-dimensional irreps of the nonabelian
translation groups of infinite hyperbolic lattices, which
allows us to construct wave eigenstates for any given high-
dimensional irreps on hyperbolic lattices, and we discuss
the unusual physics of these waves. We find that d × n
bands of bulk waves arise from d-dimensional unitary
irreps in hyperbolic lattices (in contrast to n bands in
Euclidean lattices). In addition, spatially localized edge or
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interface modes must involve high-dimensional irreps. We
apply this formulation to a hyperbolic mechanical lattice,
and reveal a series of unusual features from zero modes in
hyperbolic lattices where the bulk is overconstrained, to a
modified bulk-edge correspondence for potential topologi-
cal states in hyperbolic space.
Wave basis of high-dimensional representations of

hyperbolic lattices.—In this section we consider general
principles for constructing wave basis from lattice poten-
tials. Let us first briefly review the case of Euclidean
lattices, where wave eigenstates are described by Bloch’s
theorem. Because the translation group T of Euclidean
lattices is abelian and all elements of T commute with the
Hamiltonian H (which has the same periodicity of the
lattice), one can choose a set of waves that are eigenstates
of H and all elements tR in T

tRψðrÞ≡ ψðt−1R rÞ ¼ ψðrÞeikR; ð1Þ

and these waves can be written as

ψðrÞ ¼ e−ikruðrÞ; ð2Þ

where r is the position in space, k is the crystal momentum,
and uðrÞ is a function with the same periodicity as that of
the lattice. This theorem from Bloch [Eq. (2)] has an
equivalent description, using the Wannier basis, a complete
orthogonal basis that characterizes localized molecular
orbitals of crystalline systems [13],

ψðrÞ ¼
X
R

ϕRðrÞe−ikR ¼
X
tR∈T

½tRϕðrÞ�e−ikR; ð3Þ

where the Wannier function ϕRðrÞ obeys ϕRðrÞ ¼
tRϕðrÞ ¼ ϕðt−1R rÞ. The sum here is over all lattice vectors
(or equivalently all elements of the lattice translation
group). These three formulas [Eqs. (1)–(3)] are equivalent
to each other.
Next, we generalize this formulation to hyperbolic

lattices in the form of fp; qg tilings (i.e., lattices of p-
sided polygons tiling the hyperbolic plane in a regular
pattern such that q polygons meet at each vertex). The
space symmetries of these tilings are described by the
Coxeter group G, a nonabelian infinite group which is
analogous to the space group of Euclidean lattices [14]; see
the Supplemental Material for a brief summary. For tilings
that satisfy the condition that q has a prime divisor less than
or equal to p, a generalized translation subgroup T ⊂ G
can be defined, where each element t ∈ T has a one-to-one
correspondence with each polygon in the tiling [15], and
the lattice dual to the tiling (i.e., fq; pg) can be defined as a
generalized Bravais lattice. This algebraic generalization
of translations and Bravais lattices recovers the conven-
tional definition when applied to regular Euclidean Bravais
lattices. Similar to the Euclidean case, lattices that do not

satisfy this criterion (non-Bravais lattices) can be consi-
dered as a Bravais lattice with a basis (internal d.o.f.s). This
definition differs slightly from the one used in Ref. [10],
because our translation group is not limited to hyperbolic
translations, and it broadens Bloch’s theorem to more
generic non-Euclidean lattices (e.g., spherical lattices like
the 600 cells [16]).
This generalized translation group enables a generali-

zation of Bloch’s theorem to higher-dimensional irreps. To
achieve this, we start by drawing analogies with Eqs. (1)
and (3). Here, although the Hamiltonian H commutes with
all elements of T, the group T itself is nonabelian. Thus,
some eigenstates of H must lie in some high-dimensional
irreps of T. That is, if ψ1ðxÞ is an eigenstate of H with
energy E, there must be an irrep ρ (say d dimensional) and
d − 1 other eigenstates ψ2ðxÞ;…;ψdðxÞ with the same
energy E such that ∀ t ∈ T

tψ jðrÞ≡ ψ jðt−1rÞ ¼ ψ iðrÞρðtÞij; ð4Þ

where the d × d matrix ρðtÞ is a d-dimensional irrep of the
translation group T [17]. This is the nonabelian generali-
zation of Eq. (1), and the d degenerate eigenstates ψ iðrÞ are
the generalized Bloch waves. This definition has been
adopted in Ref. [9] to characterize eigenstates on finite
hyperbolic lattices under periodic boundary conditions.
Here we show how such waves can be constructed for
general infinite hyperbolic lattices, leading to band struc-
tures. In particular, we use the Wannier basis in analogy to
Eq. (3),

ψ jðrÞ ¼
X
t∈T

½tϕiðrÞ�ρðt−1Þij; ð5Þ

where a set of dWannier functions ϕiðrÞ can be obtained by
solving the eigenstates of the Hamiltonian (see the next
section). It is straightforward to verify that waves con-
structed via Eq. (5) indeed transform as Eq. (4) (see
Supplemental Material).
Below, we show that for each irrep, all of its eigenmodes

can be obtained using this generalized Bloch’s theorem. By
exploring all irreps of T, a complete description of all
eigenmodes can in principle be obtained.
Eigenmodes in non-Euclidean lattices.—In this section

we apply the generalized Bloch theorem to find eigen-
modes of any high-dimensional irrep ρðtÞ. In general, we
can write any states as

jψi ¼
X
t∈T

Xn
a¼1

cðt; aÞjvðaÞt i: ð6Þ

Here we label each unit cell using elements of the trans-

lation group t ∈ T, and jvðaÞt i is a complete orthonormal
basis for the n d.o.f.s (labeled by a) in unit cell t. In the
continuum, the index a is a continuous variable labeling
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coordinate r (plus some additional indices for internal
d.o.f.s). One convenient choice of basis is to require

jvðaÞt i ¼ tjvðaÞI i, where the basis in the unit cell I at the

origin can be chosen arbitrarily as jvðaÞI i ¼ jvðaÞi and then
the basis of any other unit cell is obtained via a translation.
Due to the one-to-one correspondence between group
elements of T and unit cells, this approach defines a unique

set of basis jvðaÞt i. In this basis, jvðaÞt i can effectively be

decomposed into the direct product of jvðaÞt i ¼ jvðaÞi ⊗ jti,
where jti labels the unit cell and jvðaÞi spans the linear
space of d.o.f.s in a unit cell. As a result, any Hamiltonian
(or dynamical matrix) that preserves the lattice translational
symmetry can be written in the following form:

H ¼
X
t0∈T

Ht0 ⊗
X
t∈T

jtihtt0j; ð7Þ

where Ht0 is an n × n matrix defined in the linear space of
jvðaÞi. It describes the hybridization between unit cells t and
tt0. If H is Hermitian, Ht0 ¼ H†

ðt0Þ−1 .
Following the generalized Bloch’s theorem discussed

above [Eq. (5)], we write the Bloch-wave eigenstates of a
d-dimensional irrep,

jψ ji ¼
X
t∈T

�Xn
a¼1

λa;ijvðaÞi ⊗ jti
�
ρðt−1Þij: ð8Þ

Using this construction, the eigenvalue problem Hjψ ji ¼
Ejψ ji is converted to the eigenvalue problem of a dn × dn
matrix HðρÞλ ¼ EðρÞλ where

HðρÞ ¼
X
t∈T

Ht ⊗ ρðt−1ÞT: ð9Þ

Each eigenvalue give us an eigenenergy E, and the
corresponding eigenvector λa;i yields d degenerate Bloch
waves, carrying this d-dimensional irrep [Eq. (8)]. It is
important to highlight that for each d-dimensional irrep, we
shall obtain d × n eigenenergies, i.e., d × n energy bands,
each d-fold degenerate (d2 × n eigenstates in total). This is
in sharp contrast to Euclidean lattices, where the band
number is determined solely by n, because d ¼ 1. The fact
that d2 × n eigenstates emerge here, instead of n, is
analogous to the regular representation of a finite group
[17], where a d-dimensional irrep reoccurs d times and thusP

irreps d
2 ¼ the number of group elements. A similar

procedure can be done solving eigenstates in the con-
tinuum, as described in the Supplemental Material.
Phonons on {14,7}.—We now demonstrate the principles

discussed above in a particular hyperbolic lattice: the {14,7}
tiling (Fig. 1). The translation group T of {14,7} can be
generated by the hyperbolic translations that translate the
central 14-gon to its neighbors,fγig7i¼1, as shown in Fig. 1 on
the Poincaré disk model (which maps the infinite hyperbolic
plane to the unit disk D) [18]. It is straightforward to see that

this is a nonabelian group, i.e., operations γi do not commute
with one another (example shown in Fig. 1). Acting products
of γi generate all 14-gons without overlapping on the {14,7},
and they must satisfy two constraints, γ5γ2γ6γ3γ7γ4γ1 ¼ 1
and γ5γ3γ1γ6γ4γ2γ7 ¼ 1. By identifying edges iwith i0, a 14-
gon becomes a genus-3 torus Σ3 [19], and each γi becomes a
loop on this torus, i.e., one element of the fundamental group
π1ðΣ3Þ ¼ fha1; a2; a3; b1; b2; b3i; ½a1; b1�½a2; b2�½a3; b3� ¼
1g (here ½t; t0�≡ tt0t−1t0−1 is the commutator between two
group elements). Based on this mapping, an isomorphism
between T and π1ðΣ3Þ can be obtained (see Supplemental
Material [20]), utilizing the relation between the deck group
of universal covers and fundamental groups [21]. Thus we
can use d-dimensional irreps of the a’s and b’s to construct
irreps of T.
Here, we use an explicit model mechanical system to

demonstrate the principles discussed above. More exam-
ples using tight-binding models can be found in the
Supplemental Material [20]. We place a mass m ¼ 1 at
each node of {7,14} [red dots of Fig. 1(a)] and use an
elastic spring (with spring constant k ¼ 1) to connect
neighboring nodes. This spring network has two (in plane)
degrees of freedom per unit cell (n ¼ 2); thus for
modes in 1D representations of T, we expect two phonon
bands, which is indeed what we observe in Fig. 2(a).
Here, 1D representations span a six-dimensional BZ
(from the six generators a’s and b’s), and we plot a 1D
cut of this 6D space using the representation a1 ¼ eik

and a2 ¼ a3 ¼ b1 ¼ b2 ¼ b3 ¼ 1.
For higher-dimensional irreps, the BZ is generalized to a

½ð2g − 2Þd2 þ 2�-dimensional space (g ¼ 3 for {14,7}) [9],
which labels all d-dimensional irreps. Here, to demonstrate
the generalized Bloch’s theorem for higher-dimensional
irreps, we plot a 1D cut of this 18-dimensional band
structure using this set of 2D irreps:
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FIG. 1. The Bravais lattice and translation group of a 2D
hyperbolic periodic tiling {14,7}. (a) The {14,7} tiling (blue
geodesics showing the edges) and its dual lattice {7,14} (red dots
showing the nodes) on the Poincaré disk. The {7,14} is a
generalized Bravais lattice. The two arrows mark translations
γ2γ1 and γ1γ2 respectively, demonstrating the noncommutativity
of translations. (b) Seven translations, γ1;…; γ7, denoted as
arrows on a 14-gon, which generates the translation group of
the {14,7} tiling.
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aα ¼ cos λI þ i sin λσα; b1 ¼ b2 ¼ I; b3 ¼ e−iλI;

ð10Þ
where I is the 2 × 2 identity matrix and σα with α ¼ 1, 2, 3
are the three Pauli matrices. For 0 < λ < π or π < λ < 2π,
each λ labels a 2D irrep, and we can compute its
eigenfrequencies and eigenmodes following the genera-
lized Bloch theorem [Fig 2(b); see Supplemental Material
[20] for details]. Indeed, we found d × n ¼ 4 phonon
bands, each twofold degenerate.
Nonunitary representations and bulk-edge corres-

pondence.—In this section, we discuss states with localized
edge modes. Although the origin of such edge modes may
vary (e.g., topological or accidental), they all involve
nonunitary representations of the translation groups. In
Euclidean space, a wave from a nonunitary representation
takes the same form as the Bloch wave ψðrÞ ¼ uðrÞe−ikr,
but its wave vector k takes a complex value. In general, in a
Euclidean lattice, any bulk (edge) modes can be written as
the superposition of unitary (nonunitary) modes, which
correspond to a Fourier (Laplace) transformation.
In hyperbolic Bravais lattices, edge modes also involve

nonunitary representations, but interestingly, they cannot be
described by 1D nonunitary representations of the trans-
lation groups, due to the nonabelian nature of T. For any 1D
representation, although repeatedly acting one translation t
with ρðtÞ† ≠ ρðtÞ−1 does lead to coherent decay (or growth)
of its amplitude [Fig. 3(b)], the mode must be invariant
under any translation that belongs to the commutator
subgroup of the translation group [Fig. 3(c)]. The commu-
tator subgroup ½T; T� is generated by all commutators ½t; t0�
of group elements of T, and for any 1D representations,
ρð½t; t0�Þ ¼ 1, i.e., these modes must be invariant under ½t; t0�
(as shown in the Supplemental Material [20]). In contrast to
Euclidean lattices, where ½T; T� is always trivial, the
commutator subgroup of a hyperbolic lattice contains
infinitely many translations in various directions, along
which 1D-representation modes cannot decay, making it
impossible to form a localized edge state (although certain

corner modes are allowed, e.g., at the tip of a sharp wedge
along the orange geodesic in Fig. 3 where the mode grows
exponentially toward the tail of the arrow).
This observation has a deep impact on topological edge-

bulk correspondence. In Euclidean space, it has long been
know that a nontrivial topological structure in bulk band
can lead to nontrivial edge modes, known as the bulk-edge
correspondence [22]. For a hyperbolic lattice, such corre-
spondence necessarily requires higher-dimensional repre-
sentations. Even if a bulk topological index only involves
1D representations (e.g., Ref. [11]), the corresponding edge
states (if exist) must involve higher-dimensional nonunitary
irreps, because 1D (unitary and nonunitary) representations
cannot form edge modes. This observation is one example
demonstrating the incompleteness of 1D representations in
non-Euclidean lattices. In fact, because 1D representations
(unitary or not) can only lead to waves invariant under any
transition in ½T; T�, they cannot offer a complete wave basis.
Any modes (bulk or edge) not obeying this invariance
necessarily require higher-dimensional irreps.
Another interesting feature that arises by considering

nonunitary representations is the existence of zero modes.
Although the mechanical lattice we consider here has
coordination number z ¼ 14, which is far above the
Maxwell criterion for stability [23–26], the lattice is
guaranteed to have zero modes under open boundary
conditions. This can be seen, e.g., in 1D representation,
by comparing the number of constraints (7 per unit cell from
the springs) and free variables (13 from 6 complex momenta
k1;…; k6 and 1 for the direction of displacements; see
Supplemental Material [20] for details). The excess free
variables allows zero modes in the linear model, in a way
similar to how corner modes arise in overconstrained lattices
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FIG. 2. Phonon band structure of a hyperbolic spring network
on {7,14}. (a) A 1D cut of phonon bands from 1D representa-
tions, where each wave vector k labels a 1D representation of T.
Same as in Euclidean lattices, the number of bands (2) coincides
with the number of d.o.f.s per unit cell n ¼ 2. (b) A 1D cut of
phonon bands from 2D irreps, where each λ marks one 2D irrep
[Eq. (10)]. Here, the band number is d × n ¼ 4 instead of n ¼ 2,
and each band is twofold degenerate.

FIG. 3. Absence of localized modes in 1D representations.
(a) Two types of geodesics in {14,7} constructed by repeatedly
acting on the central 14-gon via either (i) one generator (γ−17 in
this case, orange) or (ii) an element in ½T; T� (blue). (b),(c)
Amplitude of a zero mode (see Supplemental Material [20]) from
a nonunitary 1D presentation on discrete degrees of freedom in
unit cells for these two geodesics, where the mode exponentially
decays on type (i) geodesics (b), and oscillates on type (ii) geo-
desics (c). The periodicity in (c) is a universal feature of all 1D
representation modes.
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[27]. This works similarly for 2D irreps where we have 18
complex momenta. An alternative way to see the existence
of these zero modes is that the fraction of boundary nodes is
Oð1Þ in hyperbolic lattices, leaving a macroscopic number
of removed constraints.
Conclusions and discussions.—In this Letter we general-

ize Bloch’s theorem to high-dimensional irreps of infinite
hyperbolic lattices, using linear combinations of Wannier
basis. We find that hyperbolic lattices exhibit a number of
unusual features, in contrast to Euclidean lattices, from
high degeneracy of band structures to modifications of
bulk-edge correspondence that require high-dimensional
irreps. We apply this theory to a model mechanical
hyperbolic lattice, and compute its band structure and
zero modes.
The same as Bloch’s theorem in Euclidean space, once

an irrep is given, our theorem enables us to find all d2 × n
eigenmodes of this irrep. In parallel to our theorem, another
interesting question is to find all irreps of translation groups
of hyperbolic lattices, which is a nontrivial mathematical
problem due to the rich variety of hyperbolic lattices and
the nonabelian nature of their translation groups. In contrast
to Euclidean space, where all irreps can be labeled by k
points in the BZ, hyberbolic lattices require infinitely many
high-dimensional “BZs” (e.g., for lattices studied in
Ref. [28], d-dimensional irreps span a ½ð2g − 2Þd2 þ 2�-
dimensional space).
A number of interesting new questions arise for future

studies. For example, how do acoustic phonon branches
show up in this formulation, and what is the new form of
Goldstone’s theorem [29,30]? Interestingly, in the mechani-
cal hyperbolic lattice we considered here, k ¼ 0 modes in
1D representation and λ ¼ 0 modes in 2D (reducible)
representation all have finite frequencies ω > 0, in contrast
to acoustic phonon modes in Euclidean lattices, which are
protected to have ω ¼ 0 at k ¼ 0 by Goldstone’s theorem.
The reason is that uniform translations in hyperbolic
lattices are isometries which can be described as boosts
in the hyperboloid model, instead of k ¼ 0modes. It would
be very interesting to show the new form of Goldstone’s
theorem. Furthermore, unusual symmetries and bulk-edge
correspondence in hyperbolic lattices also provide a huge
space for new topological states.
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