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Recent experiments [Grinenko et al. Nat. Phys. 17, 1254 (2021)] reported the observation of a
condensate of four-fermion composites. This is a resistive state that spontaneously breaks the time-reversal
symmetry, leading to unconventional magnetic properties, detected in muon spin rotation experiments and
by the appearance of a spontaneous Nernst effect. In this Letter, we derive an effective model for the four-
fermion order parameter that describes the observed spontaneous magnetic fields in this state. We show that
this model, which is alike to the Faddeev-Skyrme model can host skyrmions: magnetic-flux-carrying
topological excitations.
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Recent experiments [1] reported the observation of a
fermion quadrupling state in the multiband material: hole-
doped Ba1−xKxFe2As2. This resistive state, coined quartic
bosonic metal, is a condensate with an anticorrelated flow
of pairs of Cooper pairs belonging to different bands. In
contrast to superconductors, which break the U(1) gauge
symmetry, this state spontaneously breaks the two-fold
(Z2) time-reversal symmetry. This raises the question of the
properties of such states.
An effective model can describe the properties of con-

densates at large length scales. For a pair condensate, the
effective model is the celebrated Ginzburg-Landau theory
which has been extensively studied since the second half of
the last century. The question of effective models describing
the fermion quadruplet quartic metal is more subtle. In this
Letter, we derive an effective long-wavelength model for the
resistive quartic state reported in Ba1−xKxFe2As2. Based on
this, we report the key properties of that state: Namely its
magnetic properties and the nature of the topological
excitations it supports.
At low temperatures, the compound is a superconductor

characterized by Cooper pair condensates Δa, forming in
the different bands labeled by a. Importantly this super-
conductor breaks the time-reversal symmetry [2,3], so that
the total symmetry broken by the low-temperature state is
Uð1Þ × Z2. The analysis of the magnitude and polarization
of spontaneous magnetic fields [3–5] indicates a spin-
singlet superconducting state that breaks the time-reversal
symmetry. It is the so-called sþ is state which has two
energetically equivalent locking of the relative phase θb −
θa between the superconducting gaps in different compo-
nents Δa;b.
The mechanism responsible for the appearance of the

quartic metal is the following: The standard assumption of
the Bardeen-Cooper-Schrieffer theory is a mean-field

approximation for the fields quadratic in fermions: This
assumption eliminates, by construction, the possibility for
fermion quadrupling. The resulting theory yields the phase
diagram of such a superconductor, which is typically a
dome of the sþ is state between two different super-
conducting states [6–10]. It was pointed out in [11,12], that
relaxing the mean-field approximation in a multi-
component fermion pairing theory results in a phase
diagram with the appearance of fermion quadrupling
condensates. The large-scale Monte Carlo calculations of
Uð1Þ × Z2 states demonstrated that the discrete Z2 tran-
sition can exceed the superconducting U(1) transition:
Tc < TZ2

c [13–15].
The spontaneous breakdown of the time-reversal sym-

metry in the resistive state of Ba1−xKxFe2As2, at the doping
level x ≈ 0.8 [1] dictates that the averages of the pairing
order parametersΔa are zero, but that there exists a nonzero
order parameter which is fourth order in the fermionic
fields. The quadrupling order parameter is proportional to
the product of pairing order parameters in different bands
Δ�

aΔb. Such an order parameter implies an anticorrelation
in the flows of the components a and b. Crucially, although
these types of counterflows do not represent superconduc-
tivity, they are generally coupled to the magnetic field when
the densities of the counterflowing charged components are
unequal. An effective model should account for this
coupling, and should be different from the Ginzburg-
Landau model of a Meissner state.
Below we derive such an effective theory, based on the

mean-field approximation for the four-fermion order
parameter. We demonstrate that, in an inhomogeneous
sample, the model supports spontaneous magnetic fields,
consistently with the experimental results [1]. It also
predicts the existence of topological excitations carrying
a quantized magnetic flux, in the form of skyrmions.
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We derive our effective model for a state with composite
order from a generic model of a superconductor with a two-
component order parameter Ψ, with Ψ† ≔ ðψ�

1;ψ
�
2Þ. The

detailed derivation from the microscopic theory can be
found in the Supplemental Material [16]. The generic
Ginzburg-Landau free-energy density for a two-component
superconductor reads as

F ðΨ;AÞ ¼ B2

2
þ kab;ij

2
ðDiψaÞ�Djψb þ VðΨ†;ΨÞ; ð1Þ

where VðΨ†;ΨÞ is the potential energy term. The repeated
indices are implicitly summed over, and the indices i, j
denote the spatial coordinates while a, b label the different
components. The individual condensates are coupled to the
vector potential A, of the magnetic field B ¼ ∇ × A, via the
gauge derivative D ¼ ∇þ ieA in the kinetic term. In this
Letter, we focus on two-component models that break
multiple symmetries. The symmetry breaking is encoded in
the potential term VðΨ†;ΨÞ which explicitly reduces the
global SU(2) symmetry of a doublet of complex order
parameters down to a smaller symmetry group. For
example, the SU(2) symmetry is broken down to
Uð1Þ × Z2, for a superconductor that breaks time-reversal
symmetry such as sþ is, sþ id, dþ ig, pþ ip, or down
to Uð1Þ × Z3 symmetry as was suggested for some nematic
superconductors [25]. The composite order of interest
arises if the fluctuations-driven restoration of the local
gauge symmetry occurs without restoring the other broken
symmetries. The existence of a composite order was
demonstrated in systems featuring Uð1Þ × Uð1Þ [11,12]
and SU(2) [26,27] symmetries, and from these calculations
it follows that composite order also exists for Uð1Þ × Zn
symmetries. While most of our results qualitatively apply to
all of the above mentioned pairing mechanisms, we focus
below on the case of the broken time-reversal symmetry
Uð1Þ × Z2, and in particular on the sþ is state, motivated
by the experiment on Ba1−xKxFe2As2 [1]. Other related
states with composite order were discussed in [28–37].
At the microscopic level, the minimal model features

three distinct superconducting gaps Δ1;2;3 in three different
bands, and the pairing that leads to the time-reversal
symmetry breaking states is dominated by the competition
between different interband repulsion channels [6,8,10]. In
the case of an interband-dominated repulsive pairing,
only two fields ψ1;2 appear in the effective Ginzburg-
Landau model for the superconducting state, see e.g.,
Refs. [8,38,39]. When starting from the microscopic
three-band model, the relevant two-component Ginzburg-
Landau theory features mixed-gradient terms, which can be
eliminated by a linear transformation to new fields, see e.g.,
Refs. [39,40] and the Supplemental Material [16]. The
resulting Ginzburg-Landau theory is characterized by the
free-energy F=F0 ¼

R
F whose density reads as

F ðΨ;AÞ ¼ B2

2
þ 1

2
jDΨj2 þ VðΨ†;ΨÞ: ð2Þ

To account for the four-fermion state, the Ginzburg-
Landau theory (2) is first mapped onto a model that couples
the supercurrent J ¼ eImðΨ†DΨÞ to a real three-vector m.
It is defined as the projection of the superconducting
degrees of freedom Ψ onto spin-1=2 Pauli matrices σ:
m ¼ Ψ†σΨ; hence this is an order parameter which is
fourth order in the fermionic fields. This order parameter
depends on the relative phase between the original complex
fields, and does not depend on the superconducting degree
of freedom: the phase sum. The norm of m is related to the
total density squared kmk≡ ϱ2 ¼ Ψ†Ψ. In terms of J and
m, the free energy reads as [16]

F ¼ 1

2

�
ϵkij

�
∇i

�
Jj
e2ϱ2

�
−

1

4eϱ6
m · ∂im × ∂jm

��
2

þ J2

2e2ϱ2
þ 1

8ϱ2
ð∇mÞ2 þ VðmÞ; ð3Þ

where ϵ is the rank-3 Levi-Civita symbol. The term in the
square brackets in (3) is the magnetic field expressed
through gradients of the matter fields. The first term there
is the contribution of the Meissner current J to the magnetic
field, while the second term accounts for the interband
counterflow [41,42]:

B ¼ ∇ ×

�
J

e2ϱ2

�
−

ϵabc
4eϱ6

ma∇mb × ∇mc: ð4Þ

The second term is particularly important: It is related to the
counterflow of two components, since it has a form of
gradients of the composite field ψ�

aψb, i.e., it depends on
gradients of the relative phase between components.
A counterflow of two identical charged components results
in no charge transfer and hence does not couple to the
magnetic field. However, if the densities of the components
are locally imbalanced, the charge transport occurs. Thus
the coupling to the magnetic field involves a dependence of
the relative density gradients.
Next, the low-temperature model (3), which microscopic

derivation is given in the Supplemental Material [16], is
used to obtain an effective model of the fermion quad-
rupling phase. The fermion quadrupling phase identified in
[1,13,14] is resistive. This is caused by the disorder of the
superconducting phase due to the proliferation of topo-
logical defects. The effective model of the resulting fermion
quadrupling state is obtained by removing the supercon-
ducting degrees of freedom from (3). Indeed, as demon-
strated in Monte Carlo calculations, their prefactors are
renormalized to zero [1,13,14,26,27,30,43,44,45]. It fol-
lows that the Meissner current vanishes (J ¼ 0), while the
currents associated with gradients of the fermion quadru-
pling order parameter m do not. Assuming that the critical
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temperatures of the Z2 and U(1) transitions are well
separated, the free energy of the fermion quadrupling state
can be written as

F ðmÞ ¼ ðm · ∂im × ∂jmÞ2
16e2kmk6 þ ð∇mÞ2

8kmk þ VðmÞ; ð5aÞ

where VðmÞ ¼
X

a¼0;x;y;z

αma ma þ
1

2

X
a;b¼0;x;y;z

βmabmamb: ð5bÞ

Here the component m0 stands for the magnitude of m,
m0 ≔ kmk (see details of the microscopic expressions for
the coefficients in [16]). The first term in (5) has to be
retained because it depends only on the relative phases and
densities of the original superconducting fields. Hence it
cannot vanish at superconducting phase transition, when
Tc < TZ2

c [46]. The fermion quadrupling phase reported in
[1] breaks the time-reversal symmetry. Hence the potential
term (5b) breaks the symmetry associated with the vectorm
down toZ2. In the original Ginzburg-Landau model (2), the
time-reversal operation is the complex conjugation of
the superconducting condensates Ψ. Correspondingly, for
the soft modulus vector it is a reflection of m on the xz
plane of the target space:

T ðΨÞ ¼ Ψ� ⇔ T ðmÞ ¼ ðmx;−my;mzÞ: ð6Þ

This means that the states that break the time-reversal
symmetry must havemy ≠ 0. This is, for example, enforced
by βmxx > 0, since it penalizes m2

x. The other details of the
analysis of the potential can be found in the Supplemental
Material [16]. The essential features can be qualitatively
summarized as follows: First, all of the coefficients involv-
ing a y index vanish: αmy ¼ βmay ¼ βmya ¼ 0. Moreover, the
criterion for the condensation is αm2

0 < αm2
x þ αm2

z , and
also βm00; β

m
zz > 0.

The quadrupling phase appears when the mean-field
approximation for the pairing fields is relaxed. The model
(5) can be viewed as a mean-field approximation for the
fermion quadrupling fields in a resistive state, such as the
Z2-metal reported in [1]. Since superconducting currents
are absent in the resistive state, the magnetic field caused by
the gradients in the fermion quadrupling fields becomes

B ¼ −
ϵabcma∇mb × ∇mc

4ekmk3 : ð7Þ

In two spatial dimensions, the topological invariant,
which is associated with the degree of the maps
m=kmk∶S2 ↦ S2

m, reads as

QðmÞ ¼ 1

4π

Z
R2

m · ∂xm × ∂ym

kmk3 dxdy: ð8Þ

The integrand is obviously ill defined when kmk ¼ 0.
However, whenever kmk ≠ 0, the corresponding configu-
ration has an integer topological charge QðmÞ ∈ Z; this
suggests that the model can host skyrmion topological
excitations. Note that in three dimensions the model is
characterized by another invariant, the Hopf invariant,
which is associated with the maps S3 ↦ S2

m. This suggests
the existence of hopfions, but it is beyond the scope of the
current discussion.
The model describing the resistive fermion quadrupling

state is like the Faddeev-Skyrme model [47]. This suggests
that it could host nontrivial topological excitation such as
skyrmions and hopfions. To investigate the properties
of the topological defects of the effective model, the
physical degrees of freedom m are discretized within a
finite-element formulation [48], and the free energy (5) is
minimized using a nonlinear conjugate gradient algorithm.
For details of the numerical procedure, see [16].
The experiments [1] reported spontaneous magnetic

fields in the quartic metal state. In the sþ is superconduct-
ing state, spontaneous magnetic fields can arise due to
inhomogeneities such as thermal gradients [1,49], a hot
spot created by a laser pulse [38], the effect of impurities
[50,51], and other inhomogeneous arrays [4,40]. The
material has slight inhomogeneity in doping level, which
results in relatively small local modulation of the super-
conducting critical temperature [52]. Since for this topic the
relative values of the gaps and phases strongly depend on
doping, this can be modeled by spatial modulation of the
prefactors of the quadratic terms of the Ginzburg-Landau
theory. Implementing smoothly spatially varying ampli-
tudes of the individual components, at the level of the
effective model, can thus be modeled by small spatial
variations of the coupling constants αm0 and αmz (see
Supplemental Material for details [16]). As shown in
Fig. 1, such inhomogeneities in the effective model for
the fermion quadrupling state, which break the time-
reversal symmetry, result in spontaneous magnetic fields.
It is qualitatively in accordance with the experiment [1].
First note that because the time-reversal symmetry (Z2)

is broken, the model has domain-wall excitations. These are
similar, in a way, to the domain walls found in a three-
component model [1,53]. They are thus discussed in the
Supplemental Material [16]. However the quantization of
QðmÞ suggests that the model has more nontrivial topo-
logical excitations with quantized magnetic flux according
to
R
Bz ¼ Φ0Q, whereΦ0 ¼ −2π=e is the flux quantum. If

a model breaks the Z2 symmetry and has only gradient
terms which are second order in derivatives, according to
the Hobart-Derrick theorem [54,55], skyrmions cannot
exist. In our case, the presence of the Skyrme term, in
the effective model (5), allows for nontrivial configurations
that evade the Hobart-Derrick theorem. Indeed, in two
dimensions, the Skyrme term in the effective model scales
as 1=R2 (where R is a texture size), and therefore stable
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skyrmions may exist due to the competition between the
Skyrme and potential terms.
We performed numerical simulation by minimizing the

energy (5) from various initial states. When the initial guess
has a nontrivial topological charge, the minimization
procedure leads, after convergence of the algorithm, to
stable skyrmion configurations. Figure 2 shows these
skyrmions solutions for increasing values of the topological
charge QðmÞ, which is integer with an accuracy around

10−4. As shown on the middle row of Fig. 2, the skyrmions
carry a nonzero magnetic field. Moreover, since the
topological charge (8) is quantized, the skyrmions carry
integer quanta of magnetic flux. The circulating current
pattern that induces this magnetic field is illustrated in the
bottom row. This current, defined according to Ampère’s
law for the magnetic field (7) corresponds to the charge-
carrying counterflow between the different components.
Furthermore we find that the interskyrmion forces are

attractive. Hence, single quanta skyrmions attract each
other to form skyrmions with higher topological charge.
Thus in general one would not expect the formation of
regular skyrmion lattices but rather skyrmion lumps formed
by the competition between the attractive forces and
pinning landscape. Interestingly, in a single quantum sky-
rmion, the time-reversed state is realized at a zero measure
area inside the skyrmion. On the other hand, skyrmions
carrying more than one quantum feature inner regions of
the time-reversed state. The enclosed area of the time-
reversed state increases with the topological charge. This
suggests that if the Z2 symmetry associated with the
relative phase locking is strongly broken, the formation
of skyrmions is strongly inhibited. Note that unlike in
Fig. 1, the parameters for the skyrmions displayed in Fig. 2
are homogeneous, as we focus here on the detailed
structure of the skyrmions. Inhomogeneities can however
deform the skyrmions, although we find that they do not
destroy skyrmions (see Supplemental Material for
details [16]).

FIG. 2. Skyrmion solutions in a time-reversal symmetry broken state, for increasing values of the topological chargeQðmÞ. The panels
on the top row display the texture of the four-fermion order parameter m. The panels in the middle row show the associated magnetic
field B (7), and the bottom row shows the corresponding charge transferring counter-currents jcounter according to Ampère’s law. The
parameters are the same as in Fig. 1, while the coupling e ¼ 0.25.

FIG. 1. Spontaneous magnetic field B (7) in the quartic phase,
generated by inhomogeneities. The inhomogeneities are modeled
by random spatial modulation of the parameters αm0 and αmz ,
reflecting the naturally present weak gradients in doping level.
The surface elevation, together with the coloring, represents the
magnitude of the Bz. The coupling here is e ¼ 0.6, and the other
parameters are given in the Supplemental Material [16].
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The recent experiment reported a fermion quadrupling
phase in Ba1−xKxFe2As2 [1]. In this resistive phase, there is
no condensate of Cooper pairs, but a four-fermion con-
densate which breaks the Z2 time-reversal symmetry.
We derived an effective model of that resistive state,

starting from a microscopic three-band model with dom-
inant interband interaction for Ba1−xKxFe2As2 and by
implementing a mean-field approximation for the fields
that are fourth order in fermions. The effective field theory
has a structure similar to the Faddeev-Skyrme model, but
for a soft modulus vector field that represents the fermion
quadrupling order parameter. If spatial inhomogeneities are
present the model accounts for spontaneous magnetic
fields, consistently with the experimental observations
[1]. We report that despite the lack of Meissner effect
and the lack of conserved U(1) topological charge, the
model has stable topological excitations in the form of
skyrmions with conserved topological charge given by (8).
We would like to remind the reader that, similarly to

skyrmions that appear in other contexts, such as magnetism,
their existence also depends on factors that are beyond the
effective long-wavelength field-theoretic model. Namely, in
contrast to vortices, the skyrmionic topological charge is
obtained through a surface integral.Consequently, if the terms
that break the O(3) symmetry are very strong, the localization
of the skyrmionic topological charge can shrink down to
scales where the effective theory is ill defined, thereby
destroying the topological protection. When the effective
field theory is applicable, the potential barrier preventing the
collapse of a skyrmion in a film can be roughly estimated as
follows: the condensation energy density (Fc) multiplied by
the coherence volume Fcξ

2
Z2
L, where ξZ2

is the coherence
length associatedwith the broken time-reversal symmetry and
L is the film thickness.
Finally, within the range of applicability of the effective

theory, the skyrmions can be induced by taking advantage of
the Kibble-Zurek mechanism [56,57], by quenching the
material through the Z2 phase transition where the time-
reversal symmetry is broken. We expect that skyrmions may
also form by cooling through the phase transition with an
applied localmagnetic field induced through a system of coils.
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