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We report an excellent realization of the highly nonclassical incommensurate spin-density wave (SDW)
state in the quantum frustrated antiferromagnetic insulator Cs2CoBr4. In contrast to the well-known Ising
spin chain case, here the SDW is stabilized by virtue of competing planar in-chain anisotropies and
frustrated interchain exchange. Adjacent to the SDW phase is a broad m ¼ 1=3 magnetization plateau that
can be seen as a commensurate locking of the SDW state into the up-up-down (UUD) spin structure.
This represents the first example of the long-sought SDW–UUD transition in triangular-type quantum
magnets.
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Of the various magnetically ordered phases of insulators,
the spin-density wave (SDW) is perhaps the least classical
one [1,2]. While easily envisioned in metals where the spin
carriers are itinerant [3], it cannot exist in classical models
with localized spins of given magnitude at each site.
Nevertheless, there are several purely quantum-mechanical
routes to realizing SDW states in insulators. To a greater or
lesser extent they are all based on the Tomonaga-Luttinger
spin liquid (TLSL) properties of the S ¼ 1=2 quantum spin
chain with antiferromagnetic (AF) exchange interactions J.
In applied magnetic fields, a single chain develops incom-
mensurate spin correlations in the longitudinal channel
[4,5]. In most cases though, the transverse commensurate
correlations dominate, eventually resulting in transverse AF
or helical long-range order in coupled chains. To create a
SDW, one needs to somehow boost the longitudinal
correlations in each chain or to ensure that they are favored
by interchain interactions. The first approach, realized in
materials like BaCo2V2O8 [6,7] and SrCo2V2O8 [8], is to
simply endue the chains with Ising-type anisotropy.
Another route, realized quite recently [9,10], is to impose
Ising anisotropy on interchain interactions J0. This is
arguably the case of YbAlO3 [11,12]. The third route to
a SDW state exploits frustrated zig-zag interchain bonds J0
in the so-called “distorted triangular lattice” geometry.
Commensurate transverse TLSL correlations in each chain
become completely decoupled at the mean field (MF) level;
incommensurate longitudinal ones are not, and are thus the
ones to order in 3D. In this model theory predicts a
SDW phase in a very wide range of J0=J ratios [13–15].
A very special feature of this mechanism is the SDW
“locking” to a commensurate wave vector producing a

m ¼ 1=3 up-up-down (UUD) magnetization plateau state.
The latter persists even if J ¼ J0, where no chains can be
identified, and even in the fully isotropic case [16]. It thus
establishes an important link between 1D TLSL and 2D
triangular lattice physics. To date, this connection remains
poorly understood experimentally, for lack of a suitable
model system.
In the present Letter we demonstrate the existence of an

incommensurate SDW state and its locking into a UUD
phase in the triangular-lattice magnet Cs2CoBr4 [17]. Both
phases are well pronounced and occupy nearly a quarter of
the phase diagram each. The mechanism behind this
phenomenon is likely to be a blend of the three “routes
to SDW” described above.
Our target material Cs2CoBr4 crystallizes in the ortho-

rhombic Pnma structure, same as that of Cs2CuCl4 [18,19],
Cs2CuBr4 [20], and Cs2CoCl4 [21–23]. The magnetic 3d
ions (four per unit cell) are arranged in triangular-patterned
layers in the bc plane. The two Cu-based compounds
mentioned above are straightforward S ¼ 1=2 Heisenberg
J − J0 model magnets [13]. The physics of Cs2CoCl4 and
our material is more complicated. The Co2þ magnetic ions
sit in a low-symmetry distorted tetrahedral environment,
thus their orbital momentum is quenched. Their magnetism
is described in the language of S ¼ 3=2 spins dominated by
crystal-field effects. The latter reduce the magnetism to
pseudospin S̃ ¼ 1=2 degrees of freedom at low temper-
atures. In the pseudospin representation the interactions are
strongly modified, yielding a nearly XY-type coupling. The
effect is strongest for intrachain J interactions along the b
axis. These anisotropic interactions are mostly a crystal
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field effect, in contrast to more symmetric situations where
anisotropic interactions arise from direct spin-orbit entan-
glement [24,25]. In Cs2CoCl4 the zig-zag interchain
interactions J0 are negligible, making the material a nearly
ideal XY chain [23,26]. A distinctive feature of Cs2CoBr4
is that J0 is much stronger and comparable to J [17]. This
creates a novel type of frustration, in addition to the
already-present geometric frustration of J0. The crystal
structure dictates mutually perpendicular directions of the
planar anisotropy in neighboring chains. The b direction is
shared by both planes. In this way two easy-plane anisot-
ropies conspire to effectively produce an easy-b-axis
anisotropy for the pseudospins.
Below TN ¼ 1.3 K, as a function of magnetic field

applied along the b direction, Cs2CoBr4 goes through a
sequence of five magnetic phases [17]. The first and the
third phases in increasing fields are magnetization plateaux,
with pseudospin magnetization m̃ ≃ 0 and 1=3, correspond-
ingly. In this study we use neutron diffraction to unambig-
uously identify these states as the antiferromagnetic stripe
phase (AF) with propagation vectorQ ¼ ð0; 1=2; 1=2Þ, and
UUD phase with Q ¼ ð0; 1=3; 0Þ. The intermediate second
magnetic state turns out to be a longitudinal incommensu-
rate SDW with propagation vector Q ¼ ð0; ξ; 0Þ. The
experiment was performed on the CEA-CRG D23 lift-
ing-counter diffractometer at ILL (Grenoble, France). The
24.90(4) mg single crystal of Cs2CoBr4 was mounted on
the cold finger of a dilution refrigerator T ≲ 0.1 K in a
vertical 6 T cryomagnet, with Hkb and ac being in the
horizontal scattering plane. This setting allowed us to cover
jhj ≤ 6, −1 ≤ k ≤ 0, and jlj ≤ 7 r.l.u. portion of the ðh; k; lÞ
reciprocal space with λ ¼ 2.36 Å neutrons (PG002), in
which the Bragg peaks of the types described above were
collected in magnetic fields of 0, 2.2, and 3.2 T corre-
spondingly. The symmetry-based group theory analysis and
model refinement (using SARAh [27] and FullProf Suite
[28,29]) suggest the collinear configurations shown in
Fig. 1(a) to be the optimal solutions with R factors
7.1%, 14.8%, and 11% for AF, SDW, and UUD, corre-
spondingly. The field dependencies of magnetic order
parameters MQ associated with each phase (modulation
amplitudes at the given propagation vectors Q) are shown
in Fig. 1(c). For AF and UUD phases, the Bragg peak
intensity was measured by counting at fixedQ versus field.
For the SDW phase, the peak positions and intensities were
extracted from broad k scans at eight field values [28]. The
AF order parameter disappears above the discontinuous
AF-SDW transition at 1.5 T in agreement with thermo-
dynamics [17]. The apparent residual intensity at
ð0;−1=2; 3=2Þ in Fig. 1(c) is due to a simple background
model [28]. In contrast, the SDW-UUD transition seems to
be a quintessential incommensurate-commensurate lock-
ing, with rather insignificant jump in the spin modulation
depth. The residual intensity of ð0;−1=3; 1Þ below 2.8 T
is due to the poor resolution along the vertical k direction.

TheMQ extracted from the broad k scan at 2.8 T inside the
UUD phase agrees well with the more precise UUD dataset.
The field dependence of the SDW propagation vector

ð0; ξ; 0Þ was extracted from the same k scans mentioned
above. The result is plotted in Fig. 1(b). Remarkably, the
propagation vector closely follows the pseudospin relative
magnetization [17]:

jξj ¼ 1=2 − m̃=2: ð1Þ

Such behavior is typical of longitudinal incommensurate
correlations specific to S ¼ 1=2 chains. In the TLSL
framework this incommensurability corresponds to a nest-
ing vector that spans the Fermi sea of fractionalized spinon
quasiparticles [1]: ξ ¼ 2kF. This picture may provide the
basic idea for understanding the physics of Cs2CoBr4, but
the analogy is difficult to extend beyond Eq. (1). The actual
field dependence of magnetization shown in Fig. 1(b) is
entirely different from that of an XXZ chain in longitudinal
field [1,6,7].
Equation (1) also holds for coupled-chain models, the

Heisenberg J-J0 model in particular [13–15]. Similar types of
field dependencies were previously also observed in the Ising
chains [6–8], or Ising-coupled Heisenberg chains [11,12]. A
very narrow “elliptical spiral” phase with linear incommen-
suration-field dependence was also reported for the structur-
ally similar Heisenberg J-J0 magnet Cs2CuCl4 [18]. In all

FIG. 1. Diffraction results for Cs2CoBr4, Hkb. (a) AF-stripe,
SDW, and UUD phases shown in pseudospin representation.
Color denotes the relative depth of on-site modulation. Exchange
couplings J and J0 are also indicated. (b) Points: incommensurate
Bragg peak position of the SDW phase versus field. The blue line
shows the “pseudospin” relative magnetization [17]. (c) Magnetic
order parameter (modulation amplitude) MQ vs field for AF
(diamonds), SDW (circles), and UUD (squares) phases. The
corresponding wave vectors of actual measurement are also
indicated. The blue line is the magnetization curve MðHÞ
[17]. All measurements are performed at T ≲ 0.1 K.
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these cases, however, the UUD phase at ξ ¼ 1=3 is either
absent altogether (Ising chains), or is very narrow compared
to the SDW state (YbAlO3). In the latter case, theory does not
predict any plateau for the corresponding Ising-coupled
Heisenberg chain model [9,10]. It has been proposed that
the commensurate-incommensurate locking in YbAlO3

might be the consequence of, e.g., additional small inter-
actions [12]. The coexistence of amagnetization-scaled SDW
and well-defined plateau is unique for Cs2CoBr4.
To get more insight into the mechanism of the AF-SDW-

UUD sequence of transitions, we have measured the
magnetic excitation spectra at zero field (AF) and at
1.8 T (SDW). The experiment was performed on the
new CAMEA spectrometer at PSI (Switzerland) [30].
The m ¼ 1.16 g crystal of Cs2CoBr4 was mounted on
the cold finger of a dilution refrigerator with bc in the
scattering plane. A 1.8 T horizontal magnet was used, with
the direction of the field set along b. The unique combi-
nation of the multiplexing capabilities of CAMEA, the
“continuous angle” data acquisition mode, and the open
geometry of this horizontal magnet allowed us to obtain a
detailed neutron scattering intensity dataset vs ðk; l;ℏωÞ in
both AF and SDW states. Two measurement series were
performed at each field, with Ei ¼ 5.1 and Ei ¼ 3.6 meV,
for higher coverage and higher resolution correspondingly
(∼0.16 meV FWHM). The projections from the cumulative
datasets for AF (μ0H ¼ 0) and SDW (μ0H ¼ 1.8 T) phases
are shown in Fig. 2. In zero field the spectrum is gapped
(Δ ≃ 0.35 meV) and mostly dispersive along the b direc-
tion, with the bandwidth approaching 0.7 meV. In addition
to the pronounced magnonlike excitation at low energy, a
continuum with a sharp upper boundary is clearly visible.
At higher energies, ECF ¼ 2.1ð1Þ meV, we observe a
nondispersive level (see [28] for extra data), that can be
understood as j1=2i → j3=2i transition of cobalt S ¼ 3=2
at energy 2D. This gives D ¼ 12.2ð6Þ K, in good agree-
ment with the susceptibility-based estimate of 14(1) K
reported earlier [17].
The strength of J0 interactions is key to understanding

the physics of Cs2CoBr4. As Fig. 3 shows, the bandwidth
along the c axis is only about 0.1 meV. This, however, is
not a sign of an insignificant J0, but rather of geometric
frustration in the zig-zag interchain coupling and of its
predominant Ising nature. For a crude estimate we can
rely on a simple spin wave theory (SWT) calculation (using
the SpinW package [28,31]). The starting point is the
Hamiltonian

Ĥ ¼
X

i;j

X

α¼x;y;z

Jααe
ˆ̃S
α
i;2j

ˆ̃S
α
iþ1;2j þ Jααo

ˆ̃S
α
i;2jþ1

ˆ̃S
α
iþ1;2jþ1

þ J0αα ˆ̃S
α
i;2j½ ˆ̃Sαi;2jþ1 þ ˆ̃S

α
i;2j−1�; ð2Þ

with j and i enumerating the chains and sites within,
and the diagonal exchange tensors being Jααe;o ¼ Jð1; 1þ δ;
1 − ΔXYÞ and Jð1 − ΔXY; 1þ δ; 1Þ for even and odd

chains; J0αα ¼ J0ð1 − δ0; 1; 1 − δ0Þ for zig-zag bonds.
Parameters ΔXY ¼ 0.75 and δ0 ¼ 0.5 are fixed from the
basic pseudospin representation arguments [17,22]. This is

FIG. 2. Overview of magnetic excitations in Cs2CoBr4 at T ≲
0.1 K in (a) zero field and (b) 1.8 T. Color indicates the neutron
scattering intensity proportional to the dynamic structure factor
SðQ;ωÞ. The data are integrated along c� direction within the
limits indicated. Background subtraction was performed as
described in [28]. Gray areas mask regions where the incoherent
scattering dominates over the signal.

FIG. 3. (a) Dispersion along the c� direction measured in
Cs2CoBr4 at T ≲ 0.1 K in zero field. The particular k value and
integration range are indicated in the plot. (b) Intensity vs energy
transfer cuts at different momenta, integrated in 0.05 r.l.u. along l
[see orange stripes in (a)]. Dark gray areas mask the incoherent
scattering, while light gray bands hide points excluded from
the fit.
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just a minor extension of the model presented earlier [17],
which corresponds to δ ¼ 0. As discussed in the
Supplemental Material, a good description of the main
sharp spectral features is obtained with J ≃ 0.8 meV,
J0 ≃ 0.35 meV, and tiny additional Ising-type anisotropy
δ ¼ 0.1 present on the main J bond. Since the semiclassical
linear spin wave theory is ill defined for systems involving
strong quantum fluctuations like Cs2CoBr4, these results
are a good approximation only of the low-energy spectrum
[28,32,33]. For this reason, we adopted an independent
approach to estimate the ratio of J0=J: By using the Ising
spin chain as the starting point, and then the random phase
approximation, the bandwidth along and transverse to the
chain direction can be obtained [28,34,35]. This approach
also points to a significant J0=J ≳ 0.4 exchange ratio (see
[28]). We conclude that in Cs2CoBr4 the interchain
coupling is almost half as strong as the in-chain one.
This is consistent with the observed spectrum being entirely
different from that in weakly coupled Ising spin chains with
a pronounced “Zeeman ladder” of spinonic bound states
[36], such as in BaCo2V2O8 [37].
We turn to the dynamics of the SDW phase. The

corresponding dataset from CAMEA is actually quite
unique, given the horizontal-field scattering geometry,
the low energy scales, and the wide reciprocal-space
coverage. The data collected at μ0H ¼ 1.8 T are visualized
in Figs. 2(b) and 4. Compared to zero field, the spectrum
measured in the SDW phase is much broader and clearly
gapless. The latter agrees with the conclusions drawn from
thermodynamic measurements [17]. As could be expected,
the excitation energy goes to zero at the incommensurate
ð0; ξ; 0Þ positions of the SDW where the corresponding
Bragg peaks are located. However, there is one crucial
difference with the single-chain TLSL spectrum of longi-
tudinal excitations. In the latter, the spectrum is symmetric
with respect to the k ¼ 1=2 point. In Cs2CoBr4 it is not.
The sign of ξ in Eq. (1) describing the Bragg peak and soft
mode location corresponds to the parity of l for odd
k ∼ 1=2, but is reversed for k ∼ 3=2. This “staggered”
pattern of soft modes is once again dictated by the
quasitriangular, rather than chainlike, nature of the under-
lying ionic lattice. Fig. 4(f) shows this clearly. The low-
energy intensity is condensed around the side edges of the
hexagonal zones. The low-energy excitations with linear
dispersion emanate from the corresponding Bragg peaks.
Their shape at higher energy transfer appears symmetric
around k ¼ 1=2, as Fig. 4(e) shows. The high energy part
of the spectrum seems to be rather diffuse. We cannot
identify any sharp modes above 0.4 meV. This may be due
to the splitting and smearing of the zero-field spectrum by
noncommuting magnetic fields, although the scenario with
spinon complex continua, characteristic of longitudinal
fluctuations in the TLSL phase [1], cannot be ruled out
either. Moreover, the nondispersive level has now shifted to
E0
CF ≃ 1.7ð1Þ meV, in agreement with the expectations for

easy-plane Co2þ ions in transverse field with the anisotropy
constantD given above. To conclude, spectral properties of
the SDW state are heavily affected by the 2D J0 exchange,
but only at quite low energies. The high energy part seems
to be a result of the interplay of spin-1=2 chainlike physics
and Co2þ crystal-field effects. Similar arguments apply to
the high-fieldD and E phases [17]. As said, noncommuting
fields admix j � 3=2i states to the ground state, making the
pseudospin-1=2 model inadequate at finite field. Their
gapless nature [17] hints at complex structures, among
which are incommensurate planar states or spin-density
waves [2].
In conclusion, for the first time we have observed the

generation of an incommensurate longitudinal SDW phase
and its locking into an UUD magnetization plateau state,
driven by quasi-2D correlations in a J − J0 distorted
triangular lattice magnet. While there may exist some
easy-axis anisotropy in both the intra- and interchain

FIG. 4. (a), (b) Low-energy dynamics in the SDW phase of
Cs2CoBr4 measured at T ≲ 0.1 K and μ0H ¼ 1.8 T. The panels
show overviews of the “continuum” part at even and odd l with
(c), (d) zoom into the lowest accessible energies correspondingly.
Magenta crosses mark the positions of the magnetic Bragg peaks,
orange dashed lines show the k ¼ 1=2 zone centers. The
scattering in grayed areas is dominated by the incoherent line.
All data are background-subtracted. (e) Intensity-momentum cut
at two l values. The energy integration range is shown. Dashed
lines are double-Gaussian fit. The l ¼ 3 curve is shifted upwards
for visibility. (f) 0kl plane at ℏω ¼ 0 meV. Arrows indicate the
positions of SDW Bragg peaks. Orange dashed lines mark the
effective “triangular” Brillouin zones. Here the background is not
subtracted.
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exchange, the frustration of zig-zag bonds appears to be the
primary mechanism defining the phase diagram of mag-
netized Cs2CoBr4. This material appears to be an ideal
platform for exploring the interplay of anisotropy and
frustration. This exotic frustrated physics, interpolating
between 1D and 2D worlds, calls for intense future
experiments and in-depth theoretical analysis.
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