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Dissipative quantum phase transition has been widely believed to occur in a Josephson junction coupled
to a resistor despite a lack of concrete experimental evidence. Here, on the basis of both numerical and
analytical nonperturbative renormalization group analyses, we reveal breakdown of previous perturbative
arguments and defy the common wisdom that the transition always occurs at the quantum resistance
RQ ¼ h=ð4e2Þ. We find that renormalization group flows in nonperturbative regimes induce nonmonotonic
renormalization of the charging energy and lead to a qualitatively different phase diagram, where the
insulator phase is strongly suppressed to the deep charge regime (Cooper pair box), while the system is
always superconducting in the transmon regime. We identify a previously overlooked dangerously
irrelevant term as an origin of the failure of conventional understandings. Our predictions can be tested in
recent experiments realizing high-impedance long superconducting waveguides and would provide a
solution to the long-standing controversy about the fate of dissipative quantum phase transition in the
resistively shunted Josephson junction.
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Understanding physical properties of quantum systems
interacting with environmental degrees of freedom is one of
the central problems in quantum many-body physics. A
wide variety of intriguing quantum phenomena have been
revealed in the last half century; key examples include the
Kondo problem in heavy fermion materials or mesoscopic
structures [1–5], transport through quantum nanowire
systems [6–10], and quantum dissipative systems
[11–14]. One of the most notable predictions among such
fundamental problems is the dissipative quantum phase
transition (DQPT) occurring in the resistively shunted
Josephson junction (RSJ) [15–21]. Previous studies
[22–25] predicted that the Josephson junction (JJ) at zero
temperature remains superconducting below the quantum
resistance R < RQ ¼ h=ð4e2Þ while it becomes insulator
(or precisely normal metal) in R > RQ. This result has been
obtained by such theoretical methods as perturbative
renormalization group (RG) analysis [22–29] and path-
integral Monte Carlo method [30–32]. While experimental
attempts to observe DQPT have been made [33–37],
interpretation of these results has remained a matter of
debate [30,36,38–40]. In particular, a possible absence of
DQPT in the predicted parameter regime has been recently
reported [38]. All in all, despite many years of research, a
comprehensive understanding of DQPT has yet to be
achieved.
The aim of this Letter is to fill this gap and provide a

solution to the long-standing controversy regarding DQPT.

To this end, we systematically analyze RSJ on the basis of
numerical and analytical nonperturbative approaches,
namely, numerical renormalization group (NRG) and func-
tional renormalization group (FRG). Surprisingly, both
analyses lead to the ground-state phase diagram (Fig. 1)
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FIG. 1. (a) Ground-state phase diagram of RSJ. Green curve
indicates the phase boundary determined from NRG, separating
the superconducting (SC) and insulator (I) phases. Red vertical
dashed line is the commonly believed boundary. (b) FRG flow
diagrams of dimensionless Josephson (charging) energy ϵJðCÞ
at different dissipation strengths α. At UV scale ϵJ;C ≪ 1,
Josephson coupling ϵJ is always relevant and triggers non-
monotonic renormalization of dangerously irrelevant term
ν ∝ 1=ϵC. Transition occurs at finite EJ=EC in α < 1 (green
cross in top panel), while the system always flows to the SC fixed
point in α > 1 (bottom panel). Previous perturbative results are
reproduced in the limit ν ∝ 1=ϵC → 0.
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that is dramatically different from the one expected from
the previous arguments. Specifically, the insulator phase is
strongly suppressed to the deep charge regime EJ=EC ≪ 1
(Cooper pair box) while the system is always supercon-
ducting in the transmon regime EJ=EC ≫ 1, where EJ is
the Josephson coupling and EC ¼ ð2eÞ2=2CJ is the charg-
ing energy with the capacitance CJ. In particular, as α ¼
RQ=R is decreased, our results indicate the reentrant
transition from insulating to superconducting phase in α ≪
1 (see also Fig. 4 below). These findings sharply contrast
with the common wisdom that the transition should occur at
R ¼ RQ for any EJ=EC [red dashed line in Fig. 1(a)].
While the conventional understanding at an early stage

was made by perturbative analyses and duality argument,
we point out that these previous considerations implicitly
discarded a term (which we call the capacitance term
ν ∝ 1=EC) that was expected to be irrelevant from dimen-
sional counting [24,41]. We show that this previously
overlooked term is actually “dangerously irrelevant,” i.e.,
it can turn into relevant at low-energy scales due to
nonperturbative renormalization [Fig. 1(b)]. It is this subtle,
yet crucial missing piece that completes our understanding
of DQPT and explains the failure of the previous
arguments.
From a broader perspective, small quantum systems

interacting with a bosonic bath as studied here are fairly
ubiquitous in, e.g., electron-phonon systems and quantum
light-matter systems. Our analyses should have a broad
range of applications to those systems, which are currently
the subject of intense research in different fields. Moreover,
in view of the fundamental role of JJ in quantum circuits
[42–49], the present study will also advance our under-
standing of the interaction between quantum information
processors and electromagnetic environments in general.
Model.—We consider the following RSJ Hamiltonian, in

which JJ couples to the environmental degrees of freedom
represented as a collection of harmonic oscillators [11]:

Ĥ ¼ ECðN̂ − n̂rÞ2 − EJ cosðφÞ þ
X

0<k≤K
ℏωkâ

†
kâk; ð1Þ

n̂r ¼
ffiffiffi
α

p
2π

X
0<k≤K

ffiffiffiffiffiffi
2π

kL

r
ðâ†k þ âkÞ; ð2Þ

where φ is the JJ phase, N̂ ¼ −i∂=∂φ is the charge operator,
bath frequencies areωk¼vk¼vmπ=Lwithm ¼ 1; 2;…M,
K ¼ Mπ=L is the wave number cutoff, and âk (â†k) is the
bosonic annihilation (creation) operator of mode k. The
constants v and L have the dimensions of velocity and
length, and α ¼ RQ=R is the dimensionless frictional
coefficient. We remark that Eq. (1) takes the same
form as in quantum light-matter Hamiltonian under the
long-wavelength approximation [50]. Below we aim to
extract its physical properties in the wideband condition

EJ;C ≪ ℏW and thermodynamic limit L → ∞, where we
denote the frequency cutoff as W ¼ vK.
We first diagonalize the quadratic part, ECn̂2rþP
k ℏωkâ

†
kâk, via the Bogoliubov transformation and

rewrite the Hamiltonian in Eq. (1) as (see, e.g., Ref. [41])

Ĥ ¼ ECN̂
2 − EJ cosðφÞ

− N̂
X

0<k≤K
ℏgkðb̂k þ b̂†kÞ þ

X
0<k≤K

ℏωkb̂
†
kb̂k; ð3Þ

gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πv
αL

ωk

1þ ðνωk
W Þ2

s
; ν≡ π

αϵC
; ϵC ¼ EC

ℏW
; ð4Þ

where we introduce the squeezed annihilation (creation)
operators b̂k (b̂†k). The Hamiltonian in Eq. (3) can also be
derived from a microscopic model of JJ shunted by a
transmission line with impedance R, length L, and propa-
gation speed v [51]. A salient feature is that the capacitive
coupling gk acquires suppression at frequencies higher than
W=ν ¼ αEC=ðπℏÞ [52–54]. This natural cutoff frequency,
αEC=ðπℏÞ, depends only on the model parameters and our
results are independent of a choice of W as long as the
wideband condition, W ≫ αEC=ðπℏÞ, is satisfied.
To perform the NRG analysis [55], we next use a unitary

transformation Û ¼ expð−iN̂ Ξ̂Þ with Ξ̂ ¼ i
P

kðgk=ωkÞ×
ðb̂†k − b̂kÞ [56]. Introducing the field operators ϕ̂ðxÞ
and π̂ðxÞ,

ϕ̂ðxÞ ¼ ffiffiffi
α

p
φþ

X
0<k≤K

ffiffiffiffiffiffi
2π

kL

r
iðb̂k − b̂†kÞ cosðkxÞ; ð5Þ

π̂ðxÞ ¼
X

0<k≤K

ffiffiffiffiffiffiffiffi
2πk
L

r
ðb̂k þ b̂†kÞ sinðkxÞ; ð6Þ

we obtain the transformed Hamiltonian ĤU ≡ Û†Ĥ Û,

ĤU ¼ −EJ cos

�
1ffiffiffi
α

p
Z

L

0

dxϕ̂ðxÞfνðxÞ
�
þ ĤTLL; ð7Þ

where ĤTLL is the Tomonaga-Luttinger liquid Hamiltonian
and fνðxÞ is the function that exponentially vanishes on the
length scale ν=K ¼ πℏv=ðαECÞ as follows:

ĤTLL ¼ ℏv
4π

Z
L

0

dxf½∂xϕ̂ðxÞ�2 þ π̂ðxÞ2g; ð8Þ

fνðxÞ ¼
2

π

Z
K

0

dk
cosðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðνk=KÞ2
p : ð9Þ

To derive Eq. (7), we use the sum rule,
P

k ℏg
2
k=ωk ¼ EC,

which can be shown for a general light-matter-type
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Hamiltonian [56]. The new frame [Eq. (7)] gives a proper
basis to extend Wilson’s NRG approach to RSJ [51,57].
Benchmark results: The boundary sine-Gordon model.—

Before analyzing the exact RSJ Hamiltonian [Eq. (7)], we
start from benchmarking our NRG analysis for the boun-
dary sine-Gordon (bsG) model [6,7,22,24,41,58]:

ĤbsG ¼ −EJ cos
�
ϕ̂ð0Þffiffiffi

α
p

�
þ ĤTLL; ð10Þ

which can be obtained by taking the limit ν → 0 in Eq. (7).
Its ground-state properties are well understood from the per-
turbative analysis, which predicts the transition at α ¼ 1.
When α > 1, the Josephson coupling EJ is relevant and, in
the original frame [Eq. (1)], leads to the phase localization
around φ ∼ 2πZ. In other words, the ground state is phase-
coherent and superconducting. Conversely, when α < 1, the
Josephson energy EJ renormalizes to zero and the charge
becomes localized, i.e., the system is insulating.
To numerically determine the transition point, we use

the dc phase mobility, μ≡ α=ð2πÞlimω→þ0ωhφφiω, that
becomes zero (nonzero) in the SC (insulator) phase, where
hφφiω is the Fourier transform of the ground-state phase
correlation function [15,17,31]. In the transformed frame,
we can express it as

μ ¼ lim
ω→þ0

X∞
n¼0

ωn0μn0δðω − ωn0Þ; ð11Þ

μn0 ≡ αjh0jΞ̂jnij2; ð12Þ

where ωn0 is the nth excitation frequency, and we introduce
the mobility matrix element μn0 with jni being the nth
energy eigenstate in the frame after the unitary trans-
formation. We find that it suffices to calculate the dominant
matrix element μ10 for the purpose of locating the tran-
sition point.

Typical NRG flows of μ10 in the bsG model are shown in
Fig. 2(a). As the energy scale is renormalized to lower
regimes, the mobility eventually converges to zero in the
SC phase α > αc, while it remains nonzero in the insulator
phase α < αc. For each Wilson parameter Λ, we determine
the critical value αcðΛÞ by estimating the crossover scale
NðαÞ from NRG flows of μ10 and assuming NðαÞ ∝
ðα − αcÞ−1. We then extrapolate the results to Λ → 1 and
locate the transition point [59]. As shown in Fig. 2(b), our
NRG results are consistent with the analytical value αc ¼ 1
in the scaling limit ϵJ ≡ EJ=ℏW → 0.
Previous studies used the bsG model [Eq. (10)] as a

supposedly effective Hamiltonian of RSJ, which led to the
vertical phase boundary at αc ¼ 1 [red dashed line in
Fig. 1(a)]. The rationale behind this argument is that the
capacitance term ν is expected to be irrelevant from its
scaling dimension and thus might be simply taken to be
zero in Eq. (7) while replacing UV cutoff by αEC=ðπℏÞ
without affecting low-energy physics [24,41]. However, the
validity of this treatment must be carefully reexamined
because the UV theory [Eq. (7)] possesses a large capaci-
tance term ν ≫ 1, and its low-energy theory may go
beyond perturbative regimes during RG processes before
reaching to a fixed point with ν ¼ 0. To make concrete
predictions, we thus need to resort to a nonperturbative
analysis that consistently incorporates possible renorma-
lization induced by the capacitance term ν.
NRG analysis of the exact RSJ Hamiltonian.—To

achieve this, we now apply the NRG approach to the
exact RSJ Hamiltonian [Eq. (7)]. To be concrete, we fix
the charging energy ϵC ¼ EC=ðℏWÞ ¼ 0.05 and vary the
Josephson coupling as 0 < EJ=EC ≲ 0.4, for which the
dimensionless couplings satisfy the wideband condition

(a) (b)

FIG. 2. NRG benchmark results in the bsG model [Eq. (10)].
(a) Flows of the mobility μ10 plotted against the number of RG
steps N. In the SC phase α > αc, the mobility flows to zero (red
curves), while it remains nonzero in the insulator phase α < αc
(blue curves). Parameters are ϵJ ¼ 0.001 andΛ ¼ 2.0. (b) Extrap-
olations of the critical value αc to the Wilson parameter Λ → 1.
The scaling limit ϵJ ¼ EJ=ℏW → 0 leads to the transition point
αc ¼ 0.99ð2Þ, which agrees with the analytical value αc ¼ 1.

FIG. 3. NRG flows of μ10 in the exact RSJ Hamiltonian
[Eq. (7)] at different EJ=EC. The inset indicates the correspond-
ing parameter regions in the phase diagram. The system flows to
the insulator fixed point with nonzero μ10 when EJ=EC is
sufficiently small (blue curves). In contrast, the system non-
monotonically flows to the SC fixed point with zero μ10 if EJ=EC
surpasses a critical value (red curves). Parameters are α ¼ 0.5,
Λ ¼ 2.0, and ϵC ¼ 0.05.
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ϵJ;C ≪ 1 at UV scale. We confirm that our NRG analysis is
already converged against the wideband limit [51]. Figure 3
shows typical NRG flows of μ10 at α ¼ 0.5. At the
beginning of RG procedures, the mobility μ10 always
grows and the system tends to flow into the insulator
phase. When EJ=EC is sufficiently small, μ10 keeps
increasing and the system ultimately reaches to the insu-
lator fixed point (blue curves in Fig. 3). Surprisingly, when
EJ=EC surpasses a certain threshold value ðEJ=ECÞc, the
mobility μ10 turns from increasing to decreasing during RG
processes and the system eventually flows to the SC fixed
point (red curves in Fig. 3). The convergence of these flows
becomes slower as one gets closer to the transition point
(e.g., EJ=EC ¼ 0.04 in Fig. 3). We determine critical values
ðEJ=ECÞc shown in Fig. 1(a) by extrapolating the Wilson
parameter Λ → 1 for each α [51].
Figure 4 shows fixed-point values of the phase coherence

hcosðφÞi and the mobility μ10 at different α and EJ=EC. The
phase coherence gives inductive contribution to super-
current carried by the ground state [38,60,61]. The behav-
iors of hcosðφÞi and μ10 are consistent with each other;
hcosðφÞi vanishes and μ10 becomes nonzero in the insulator
phase while the opposite is true in the superconducting
phase. These results clearly indicate that the superconduct-
ing (insulating) phase at α > 0 corresponds to the phase-
localized (phase-delocalized) phase. It is also notable that
both hcosðφÞi and μ10 unambiguously indicate the reentrant
transition from the insulator to SC phase as the resistance R

is significantly increased beyondRQ (i.e., α ≪ 1). In fact, in
the limit R → ∞, JJ completely decouples from the envi-
ronment and should remain superconducting [cf. Eq. (1)];
our results in Figs. 4 and 1(a) are consistent with this
expectation.
FRG analysis.—To understand these NRG results on a

deeper level, we employ a nonperturbative analytical
approach known as the FRG [62,63]. We use the functional
ansatz retaining themost relevant Fourier mode, cosðφÞ, and
go beyond the local potential approximation by including
the (field-independent) wave function renormalization,
resulting in the following set of flow equations [51]:

dl ln ϵJ ¼ 1 −
Z

∞

0

dy
π
gðyÞ; ð13Þ

dl ln ϵ−1C ¼ −1þ ϵ2J

Z
∞

0

dy
π
hðyÞ; ð14Þ

where l ¼ lnðΛ0=ΛÞ is the logarithmic RG scale, the
dimensionless parameters satisfy ϵJðCÞ ¼ EJðCÞ=Λ0 ≪ 1 at
UV scale Λ ¼ Λ0, and the integrals of g, h give positive
values [51].
When ϵJ ≪ 1, the flow equation [Eq. (13)] has the

simple asymptotes depending on ϵC,

dl ln ϵJ ≃
ϵJ≪1

(
1 −

ffiffiffiffiffiffi
2ϵC

p
8

> 0 ϵ−1C ≫ 1

1 − 1
α ϵ−1C → 0

; ð15Þ

the latter of which reproduces the well-known perturbative
result implying the presence of DQPT at αc ¼ 1 [24].
Notably, however, the former shows that the Josephson
coupling ϵJ is relevant at any α in UV regimes. This fact
together with Eq. (14) suggests that the supposedly
irrelevant term ν ∝ ϵ−1C can significantly grow at low-
energy scales due to the nonperturbative corrections, i.e.,
it can be dangerously irrelevant.
To determine fixed points the theory ultimately flows to,

we numerically solve Eqs. (13) and (14), and obtain the
flow diagram in Fig. 1(b) [64]. Because of the dangerously
irrelevant term, when EJ=EC is larger than a critical value,
the theory flows into the SC fixed point even when α < 1,
leading to the absence of DQPT in transmon regimes. The
insulator phase is then strongly suppressed to deep charge
regimes EJ=EC ≪ 1 with α < 1 [65].
At any EJ=EC, the theory initially flows in favor of the

insulator phase since the ratio obeys dlðϵJ=ϵCÞ < 0 in UV
regimes ϵJ;C ≪ 1. At an intermediate low-energy scale,
however, the theory enters nonperturbative regimes and can
eventually exhibit the bifurcating flows to different fixed
points depending on EJ=EC [top panel in Fig. 1(b)]. This
competition between renormalized Josephson and charging
couplings explains the nonmonotonic NRG flows found
in Fig. 3.
Discussions.—The proposed phase boundary in Fig. 1(a)

is not vertical, which may appear to contradict with what is

FIG. 4. Phase coherence hcosðφÞi and the mobility μ10 plotted
against α ¼ RQ=R. The inset indicates the corresponding param-
eter regions in the phase diagram at Λ ¼ 2.0. At sufficiently large
EJ=EC, the system always resides in the SC phase (red curve).
When EJ=EC is lower than a critical value ðEJ=ECÞc, there
appears the insulating region as well as the reentrant transition
into the SC phase in α ≪ 1 (green and blue curves). Parameters
are Λ ¼ 2.0 and ϵC ¼ 0.02.
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expected from the duality argument [15,16,22,24]. This
apparent inconsistency originates from the dangerously
irrelevant term ν discussed above. Indeed, only if ν can be
safely neglected can one establish the duality between the
weak and strong corrugation regimes [22,51].
In the strong corrugation regime EJ=EC ≫ 1, it was

argued [15,22] that the RSJ Hamiltonian can be approxi-
mated by the tight-binding model of phase localized states
at φ ¼ 2πZ. This model exhibits the transition at αc ¼ 1,
which seems to be inconsistent with our results showing the
absence of transition in transmon regimes. This apparent
contradiction originates from a failure of the tight-binding
description under the wideband condition EC ≪ ℏW, in
which a cutoff-dependent term invalidates the level trun-
cation in each cosine well [51].
Meanwhile, if one considers the opposite limitEC ≫ ℏW,

both the tight-binding description and the duality argument
are expected to be valid without such ambiguities. This
parameter regime corresponds to the left sides of our FRG
phase diagram [Fig. 1(b)]. Indeed, in this limit, our results
are consistent with the previous results predicting the
transition at αc ¼ 1 for any EJ=EC.
To experimentally test our predictions, one has to take

account of the lowest transmission-line frequency ωmin ¼
πv=L and finite temperature kBT, which effectively intro-
duce an IR cutoff in RG flows. One needs to renormalize to
a sufficiently low-energy scale to attain small hcosðφÞi
close to a fixed-point value; this requires a sufficiently
large system size and low temperature. For typical
parameters of the insulator phase, α ¼ 0.3 and
EJ=EC ¼ 0.04, one needs ℏωmin; kBT ≲ 0.01EC to attain
hcosφi≲ 10−2 [51]. These conditions are within reach of
recent experiments [66–69] that have realized galvanic
coupling of JJ to a high-impedance long transmission line.
In particular, Refs. [66,67] realize EC=h ¼ 5.4 GHz,
ωmin=2π ¼ 63 MHz, L ≃ 10 mm, and UV cutoff W=2π ≃
20 GHz in superconducting waveguides, while EJ is flux-
tunable. These parameters correspond to ℏωmin=EC ≃ 0.01
and kBT=EC ≃ T=250 mK. Thus, we expect that DQPT
can be observed in this parameter region at millikelvin
temperatures. We note that our estimation seems to be
consistent with recent report of absence of DQPT [38], on
which we speculate that the experimental parameters
EC=h ¼ 13–54 GHz, L ¼ 16 μm lead to finite-size effects
causing residual phase coherence hcosðφÞi [70].
In summary, we provided a comprehensive understand-

ing of the dissipative quantum phase transition in a
Josephson junction, which has been controversial for many
years. We performed both numerical and analytical non-
perturbative renormalization group analyses and obtained
the phase diagram (Fig. 1) in which the insulator phase is
strongly suppressed to the deep charge regime while, in the
transmon regime, the system remains superconducting at
any dissipation strengths. The origin of the failure of
conventional understandings was traced to a previously

overlooked dangerously irrelevant term that turns out to be
relevant in genuinely nonperturbative regimes. Physically,
this renormalization behavior corresponds to the eventual
decrease of charging energy at low energies, which
ultimately results in the enhancement of EJ=EC and the
phase localization. Our analysis and understanding devel-
oped here can be applied to a variety of systems ranging
from strongly interacting light-matter systems to electron-
phonon problems. We hope that our work stimulates further
studies in these directions.
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