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Physically, one tends to think of non-Hermitian systems in terms of gain and loss: the decay or
amplification of a mode is given by the imaginary part of its energy. Here, we introduce an alternative
avenue to the realm of non-Hermitian physics, which involves neither gain nor loss. Instead, complex
eigenvalues emerge from the amplitudes and phase differences of waves backscattered from the boundary
of insulators. We show that for any strong topological insulator in a Wigner-Dyson class, the reflected
waves are characterized by a reflection matrix exhibiting the non-Hermitian skin effect. This leads to an
unconventional Goos-Hänchen effect: due to non-Hermitian topology, waves undergo a lateral shift upon
reflection, even at normal incidence. Going beyond systems with gain and loss vastly expands the set of
experimental platforms that can access non-Hermitian physics and show signatures associated with non-
Hermitian topology.
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Introduction.—Non-Hermitian physics describes a wide
variety of quantum and classical systems [1–3]. In the
quantum case, non-Hermitian operators model the coupling
of systems to degrees of freedom that are outside of their
Hilbert spaces, such as those of reservoirs or measurement
devices [4]. In classical physics, non-Hermitian matrices
commonly characterize optical systems [5], such as pho-
tonic crystals, but also mechanical [6] and acoustic meta-
materials [7], as well as electric circuits [8–10].
Despite their variety, these examples share gain and loss

as their common physical origin of non-Hermiticity.
Quantum systems may lose or gain quasiparticles when
they are coupled to an external bath. In optics, the gain and
loss of photons leads to complex-valued refractive indices,
and thus to an effective description that makes use of non-
Hermitian matrices [11]. Similarly, non-Hermiticity in
mechanical systems and in electric circuits is due to the
dissipation of energy produced through friction [12], and to
the Joule heating caused by resistors. Thus, in all of these
examples, the quantum or classical waves supported by the
system are associated with complex eigenvalues. The real
part encodes their excitation energy, or frequency, whereas
the imaginary part describes their decay or amplification
rate.
With this Letter, we offer a novel way of thinking about

non-Hermiticity. Rather than ascribing a physical meaning
to the real and imaginary parts of a complex eigenvalue, we
imagine it to be made up of an amplitude and a phase. To
this end, we consider transport setups in which waveguides
that support propagating modes are coupled to the boun-
daries of a topological insulator (TI) [13,14]. The waves

which are backscattered from the TI boundary are charac-
terized by the reflection matrix [15]. This non-Hermitian
operator has complex eigenvalues which describe how
much of the wave is reflected (as opposed to transmitted),
and what is the phase difference between the incident and
the reflected wave. Thus, within this framework, a zero
mode no longer has the meaning of a state at the Fermi level
which does not decay but of a wave that is perfectly
transmitted.
We prove that the reflection off all strong TIs in the

Wigner-Dyson classes [16,17] (A, AI, or AII) exhibits a
non-Hermitian skin effect (NHSE) [18,19]. This novel way
of thinking about non-Hermiticity thus provides a dic-
tionary that directly relates the paradigmatic models intro-
duced to study the NHSE to those of well-known strong
TIs. The one-dimensional (1D) Hatano-Nelson model [20],
for example, is obtained as the reflection matrix from a 2D
Chern insulator [21]. Similarly, the time-reversal invariant
1D and 2D NHSE [22] results when waves are back-
scattered from the boundaries of conventional 2D and 3D
strong TIs [23,24]. As a result, non-Hermitian topology
may be probed without introducing gain and loss into a
system but rather by using the well-established tools of
interferometry and (quantum) transport. Furthermore, this
means that non-Hermitian topology leads to new exper-
imental signatures, such as the lateral shift of a wave packet
upon reflection from a TI edge.
We begin by briefly describing the topologically pro-

tected non-Hermitian skin effect and showing that it is a
universal property of reflection matrices from the bounda-
ries of strong TIs in the Wigner-Dyson classes. Afterwards,
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we explore the physical consequences of reflection matrix
topology, focusing on a basic example: reflections from the
boundary of a Chern insulator.
Non-Hermitian skin effect from reflections.—The non-

Hermitian skin effect is a manifestation of nontrivial
topology [22,25,26]: an extensive number of modes accu-
mulates on the boundary of a system. Similar to conven-
tional TIs such as Chern insulators, the boundary modes are
present at all energies inside of a nontrivial bulk gap.
Different from Hermitian systems, however, is that now the
eigenvalues are complex, meaning that a “gap” is a 2D
region of the complex plane (called a “point gap” [27]), as
opposed to a 1D interval on the real axis.
We consider strong TIs belonging to classes A, AI, or

AII in the Altland-Zirnbauer classification [17]. They occur
in D ≥ 2 space dimensions. These systems are probed in a
conventional, two-terminal transport geometry: two semi-
infinite waveguides which support propagating modes are
attached to opposite boundaries of the TI. The reflection of
waves incident on the TI boundary is described by a
reflection matrix, r, which contains the probability ampli-
tudes for any mode to be backscattered (Supplemental
Material).
To distinguish between bulk and boundary effects, we

consider two geometries. In the infinite geometry, both the
D-dimensional TI and the two waveguides extend infinitely
along the (D − 1) transversal directions, i.e., the directions
parallel to the TI-waveguide interface [Fig. 1(a)]. We label
the reflection matrix from the left waveguide as rIðkkÞ,
where kk is a vector of the (D − 1) (conserved) momenta
parallel to the interface. The semi-infinite geometry, with
reflection matrix rSI, is obtained from the infinite one by
introducing a single boundary along one of the transversal

directions [Fig. 1(b)]. In both cases, we denote the
eigenvalues of the reflection matrix by z.
The following theorem implies that the NHSE is a

universal property of these reflection matrices.
Theorem.—Let HD be a (D > 1)-dimensional strong

topological insulator in one of the classes A, AI, or AII.
In the two-terminal geometries described above, the re-
flection matrix from the boundary of HD shows the non-
Hermitian skin effect. This means that it exhibits the
following properties:
(i) In the infinite geometry, the spectrum of rI is identical

to the unit circle in the complex plane, jzj ¼ 1. Therefore,
rI has two distinct point gaps: one inside the unit circle,
jzj < 1, and one outside the unit circle, jzj > 1 [see
Fig. 1(a)].
(ii) In the semi-infinite geometry, the spectrum of rSI

covers the entire unit disk, jzj ≤ 1, which means that the
point gap at z ¼ 0 closes as soon as a boundary is
introduced (in the transversal direction). For any value
of z inside the unit disk, rSI has at least one eigenstate
localized at the boundary of the waveguide [see Fig. 1(b)].
The idea for the proof of this Theorem is briefly outlined

below. The full proof is given in the Supplemental Material
[28]. There, we also discuss how the Theorem can
potentially be extended to topological superconductors
[14], weak topological insulators [24], topological crystal-
line insulators [33], and higher-order topological insula-
tors [34,35].
To show the presence of the NHSE, we introduce the

auxiliary Hamiltonian

HD−1ðzÞ ¼
� 0 rIðkkÞ − z

r†I ðkkÞ − z� 0

�
; ð1Þ

which depends on the complex parameter z. This
Hamiltonian is Hermitian and (D − 1) dimensional, since
it depends on the momenta kk. Moreover, it has chiral
symmetry, τzHD−1ðzÞτz ¼ −HD−1ðzÞ, with τz the Pauli
matrix acting in the 2 × 2 grading of Eq. (1). For a TI
in class A, AI, or AII, HD−1ðzÞ belongs to class AIII, BDI,
or DIII, respectively.
Note that for any eigenstate of HD−1ðzÞ at zero energy,

there is an eigenstate of rI with complex eigenvalue z
(Supplemental Material). This enables us to derive the
spectrum of the reflection matrix by examining the gap
closings ofHD−1. The latter is a strong topological insulator
protected by chiral symmetry when z ¼ 0 [36,37], and
becomes a trivial, atomic insulator for z → ∞. Therefore,
for any path in the complex plane from z ¼ 0 to ∞, a
topological phase transition must occur in HD−1ðzÞ, sig-
naled by a closing of its bulk gap. This means that the
spectrum of rI forms a closed loop encircling the origin of
the complex plane. Deep in the insulating regime, the
waves cannot be transmitted across the TI with a gapped
bulk. Thus, rI is unitary with the spectrum on the unit

(b)

(a)

FIG. 1. Transport geometries and spectrum of the reflection
matrix. Panel (a) shows the infinite geometry and panel (b) shows
the semi-infinite geometry. In each panel, the spectrum of the
reflection matrix is shown on the right.
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circle. The closed loop formed by its spectrum must
therefore be the full unit circle in the complex plane.
To show the existence of boundary states in the semi-

infinite geometry, we simply replace rI with rSI in Eq. (1).
HD−1ðzÞ is still a strong TI for any jzj < 1, as before, but
now with a boundary and the corresponding boundary
mode(s) at zero energy. As a result, the reflection matrix rSI
will have at least one boundary state for any z inside the
unit disk and the spectrum of rSI covers the entire unit disk.
Reflections from a Chern insulator.—For concreteness,

we examine the physical consequences of non-Hermitian
topology of the reflection matrices by focusing on a basic
example. We take HD¼2 to be a Chern insulator, using the
toy model introduced by Qi, Wu, and Zhang (QWZ) [38].
The two-band, square-lattice model has the form
HðkÞ ¼ dðkÞ · σ, with the momentum k ¼ ðkx; kyÞ, the
vector of Pauli matrices σ ¼ ðσx; σy; σzÞ, and dðkÞ ¼
ðsin kx; sin ky; m − cos kx − cos kyÞ. The system is gapped
and topologically nontrivial for 0 < jmj < 2, with a single
chiral edge mode localized on its boundary. The bulk gap
closes at jmj ¼ 2, signaling a transition to a trivial
insulating phase at jmj > 2.
We form the infinite geometry by connecting wave-

guides to an infinite ribbon of the QWZ model, with a
thickness of L sites in the x direction [Fig. 2(a)]. The
waveguide (or lead) Hamiltonian, Hl ¼ −2 cos kxσ0, is
time-reversal symmetric and consists of independent,
decoupled chains, each of which probes one site of the
system boundary. As such, the waveguide supports both
incoming as well as outgoing modes for every value of the
transversal momentum ky.
For 0 < m < 2, the presence of a single chiral edge

mode at the system boundary is a consequence of the
nonzero Chern numbers of the bulk bands. The Chern
number of the lower band is given by the winding number
of the reflection matrix [36,39],

C ¼ 1

2πi

Z
2π

0

dky
d
dky

log det rðkyÞ; ð2Þ

and takes on the value C ¼ 1.
The above relation, originally a consequence of

Laughlin’s pumping argument, can now be understood
as a manifestation of the non-Hermitian topology of the
reflection matrix. Equation (2) is the (nonzero) winding
number of the determinant of r and thus the eigenvalues of
the unitary reflection matrix wind, as a function of ky,
around the unit circle in the complex plane [Fig. 3(a)]. This
matches with the statement of Theorem (i).
The Chern number of the QWZ model induces a

topologically nontrivial NHSE in its reflection matrix.
The latter thus becomes topologically equivalent to the
Hatano-Nelson model, with Eq. (2) the invariant of the
Hatano-Nelson model [22]. As a result, for a finite trans-
versal extent, all the eigenstates of r are localized at one
boundary of the waveguide [Fig. 3(g)], consistent with the
statement of Theorem (ii). When the Hamiltonian under-
goes a topological-to-trivial transition, for instance by

(a)

(b)

FIG. 2. Scattering setup. The Chern insulator (blue) is con-
nected to two waveguides (beige). In panel (a), the system is
infinite in the y (vertical) direction, and the reflection matrix
depends on ky. In panel (b), both the Chern insulator and the
waveguides have a finite extent in the transversal direction.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Spectra and eigenvectors of the reflection matrix. The
origin of the complex plane, z ¼ 0, is indicated with a cross. In
panels (a)–(c), the spectra are plotted for a QWZ ribbon (100 sites
long), as shown in Fig. 2(a). There reflection matrix eigenvalues
form two “bands,” corresponding to the two orbitals per site of the
QWZ model. The color scale indicates the value of momentum ky
at which rðkyÞ is calculated. In panels (d)–(f), the spectra are
plotted for a finite system (100 × 100 sites), as in Fig. 2(b). The
color scale indicates the inverse participation ratio (IPR) of the
eigenstates defined as IPRi ¼

P
L−1
y¼0 jψ iðyÞj4. Panels (g)–(i) show

the real space probability distribution of all reflection matrix
eigenstates corresponding to the eigenvalues in panels (d)–(f).
Here, y ¼ 0 denotes the bottom boundary of the waveguide (only
the first ten sites are shown).
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changingm from 1
2
to 3, the z ¼ 0 point gap of the reflection

matrix closes and reopens [Fig. 3]. For m ¼ 3, both the
bulk gap of the QWZ model and the point gap of r are
trivial, C ¼ 0, and no skin effect occurs.
Physically, the reflection matrix converts incoming states

into outgoing states within the same waveguide. Thus, an
eigenstate of r corresponds to a wave which is back-
scattered without any change in its spatial profile. This
provides an experimental transport signature associated
with the non-Hermitian topology of the reflection matrix. If
an incoming wave is an eigenstate of r with a spatial profile
as those shown in Fig. 3(g), which are localized on the
waveguide boundary due to the NHSE, then the reflected
wave will have the same profile. Such profiles might be
obtained, for instance, by using beam-forming techniques
as in Refs. [40–42]. The complex eigenvalue associated
with this eigenstate, z ¼ ρeiϕ with ρ ≥ 0, determines the
ratio between the overall amplitudes of the reflected and
incoming wave (ρ), as well as the phase difference between
them (ϕ).
In the Hatano-Nelson model, the presence of the NHSE

has an intuitive explanation: hoppings are nonreciprocal. If,
say, the hopping to the left is stronger than the hopping to
the right, then all bulk states will be pumped leftwards until
they eventually accumulate on the system boundary. Thus,
the NHSE is associated with a unidirectional persistent
current in the bulk of the system [43,44]. When the non-
Hermitian Hamiltonian acts on an initial state, it will
produce a time-evolved state which is unidirectionally
shifted due to this current.
Since the reflection matrix is topologically equivalent to

the Hatano-Nelson model, the same shift occurs when it
acts on an incoming wave, resulting in an outgoing wave at
a different position. Heuristically, this can be understood by
noting that when an incoming mode reaches the Chern
insulator boundary, it will couple to its topological edge
state. Because of the unidirectional nature of this edge state,
the reflected wave will be laterally shifted in the direction
of propagation of the edge mode. This is a second
experimental signature of the non-Hermitian topology of
r: the nonreciprocal Goos-Hänchen effect [45].
We examine the lateral shift of reflected waves in Fig. 4,

which shows a wave packet of a propagating mode initially
localized in the left side of the waveguide. The mode is
trapped between the Chern insulator boundary and a perfect
mirror, and thus undergoes multiple reflections. After each
reflection from the TI boundary, the lateral position of the
propagating mode is shifted in the direction of motion of
the edge state, until eventually reaching the waveguide
boundary. At that point the mode is transmitted into the
other lead by means of the chiral edge state connect-
ing them.
While phenomenologically similar, this lateral shift is

distinct from the conventional Goos-Hänchen as well as the
Imbert-Fedorov effect [46]. In the latter cases, the shift of

the incoming beam only occurs for waves impinging at an
angle. Here, the lateral shift is present even for normal
incidence. The unidirectional shift is due to the non-
Hermitian topology of the reflection matrix and does not
occur if r is not topological.
Experimental realizations.—The experimental signa-

tures we have introduced above can be readily tested using
available experimental platforms, by performing transport
measurements and interferometry. In fact, some of these
experiments have already been performed, though their
connection to non-Hermitian topology has been over-
looked. The winding of the eigenvalues was first measured
seven years ago, in a microwave network [47]. Last year,
the nonreciprocal Goos-Hänchen effect was observed in a
photonic crystal [45]. Our Theorem shows that these
observations are actually connected to the non-Hermitian
skin effect, which is a universal property of reflected waves
from TIs. We predict that unconventional Goos-Hänchen
effects will occur when waves are reflected from any TI
boundaries. For instance, when backscattered from a
quantum spin-Hall edge, the incoming beam will experi-
ence a spin-dependent lateral shift.
There are a number of advantages to performing

experiments on non-Hermitian topology by using reflec-
tion matrices. A conventional, Hermitian topological
insulator can be used instead of a system where gain
and loss need to be introduced in a controlled way. Related

FIG. 4. The nonreciprocal Goos-Hänchen effect of a wave
packet reflected multiple times from a Chern insulator boundary.
The inset shows the effect schematically: the incident wave
packet is shifted laterally upon reflection. The result of the
numerical simulation is shown as a waterfall plot of the real space
probability distribution of a propagating mode along the direction
parallel to the Chern insulator boundary, y. The first curve is the
initial wave packet shape (normalized), whereas subsequent
curves show the wave packet after multiple reflections from
the TI boundary. We used a QWZ model of 100 × 100 sites,
setting m ¼ 1

2
.
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to this, reflection matrix experiments eliminate the prob-
lem of dynamical instability, which occurs whenever
overall gain is stronger than loss. This is particularly
important for non-Hermitian topology which requires
balanced gain and loss, such as the so-called “PT-
symmetric” systems [5]. There, balancing the amplifica-
tion and attenuation of waves requires fine-tuning the
system on the boundary of its dynamically unstable
regime [48]. In contrast, reflection matrices are stable
regardless of whether their eigenvalues are above or below
the real axis. This is because the eigenvalues encode phase
differences between outgoing and incoming modes.
Conclusion.—We have shown that non-Hermitian phys-

ics does not require gain and loss but can arise when waves
are backscattered from the boundary of an insulator. Apart
from a different realization of non-Hermitian physics, our
novel viewpoint leads to the insight that, when the insulator
is a strong TI in a Wigner-Dyson class, reflected waves
universally show a non-Hermitian skin effect. Moreover,
we predict an unconventional, nonreciprocal Goos-
Hänchen effect, in which non-Hermitian topology causes
incoming, normal-incidence waves to undergo a lateral
shift upon reflection.
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