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Weyl points—topological monopoles of quantized Berry flux—are predicted to spread to Weyl exce-
ptional rings in the presence of non-Hermiticity. Here, we use a one-dimensional Aubry-Andre-Harper
model to construct a Weyl semimetal in a three-dimensional parameter space comprising one reciprocal
dimension and two synthetic dimensions. The inclusion of non-Hermiticity in the form of gain and loss
produces a synthetic Weyl exceptional ring (SWER). The topology of the SWER is characterized by both
its topological charge and non-Hermitian winding numbers. We experimentally observe the SWER and
synthetic Fermi arc in a one-dimensional phononic crystal with the non-Hermiticity introduced by active
acoustic components. Our findings pave the way for studying the high-dimensional non-Hermitian
topological physics in acoustics.

DOI: 10.1103/PhysRevLett.129.084301

Introduction.—Topological phenomena were discovered
in condensed matter physics, and soon thereafter extended
to photonic and phononic crystals (PCs) [1–4]. One
important class of three-dimensional (3D) topological
systems is the Weyl semimetal, characterized by the
existence of Weyl points (WPs)—isolated twofold degen-
eracies at the crossings of two bands [5,6]. WPs are
topological monopoles of quantized Berry flux. In
Hermitian crystalline systems, WPs must emerge in pairs
and WPs of opposite charges are connected by a surface
state called a Fermi arc. WPs have been observed in
photonics [7–11], acoustics [12–16], and various con-
densed matter systems [17–21]. The physics in the vicinity
of a WP can typically be captured by a two-level Weyl
Hamiltonian containing all the components of Pauli matri-
ces. Such a mathematical form suggests it is impossible to
open a gap via Hermitian perturbations. However, pertur-
bations breaking Hermiticity lead to entirely different
scenarios. Non-Hermitian systems support a special kind
of spectral “degeneracy” called an exceptional point (EP)
[22–26], at which one or more state vector(s) become
defective. The presence of non-Hermiticity can transform
Hermitian degenerate points, such as a Dirac-like point or
WP, into an exceptional ring, which is a continuous closed
trajectory of EPs in the reciprocal space [27–30]. In
particular, the realization of a Weyl exceptional ring in
reciprocal space demands fine control of non-Hermitian
parameters in a 3D crystal, which is experimentally
challenging and so far only realizable in a helical photonic
waveguide array [30]. On the other hand, the recent

development in the synthetic dimensions indicates that
system parameters can be harnessed as degrees of freedom
that map to new system dimensions, opening a convenient
route to study higher-dimensional physics using systems
with fewer real dimensions [8,10,12,31–34].
This Letter presents an experimental realization of the

synthetic Weyl exceptional ring (SWER) in a hybrid
synthetic-reciprocal space [35] implemented by a PC with
actively controlled loss and gain [36,37]. Our system is
based on a 1D Aubry-Andre-Harper model [38,39] with
both the hopping and on-site energy terms modulated by
cosine functions that enforce two independent synthetic
dimensions. When non-Hermiticity is introduced, a SWER
spawns from the synthetic WP (SWP). Meanwhile, Fermi
arcs composed of 0D topological boundary modes are
found connecting the two SWPs or two SWERs with
different Hermitian topological charges in the synthetic 3D
parameter space. Our findings are verified in acoustic
experiments. This Letter paves the way to explore high-
dimensional non-Hermitian topological physics with low-
dimensional PCs.
Theory and design of system.—We start with the follow-

ing Aubry-Andre-Harper model Hamiltonian,

Hðkx; ξy; ξzÞ ¼
�
ω−ðξzÞ − iγ1 κðkx; ξyÞ
κ�ðkx; ξyÞ ωþðξzÞ þ iγ2

�
; ð1Þ

where ω�ðξzÞ ¼ ω0 � b1 cos ξz, κðkx; ξyÞ ¼ κþðξyÞ þ
κ−ðξyÞe−ikxa with κþðξyÞ ¼ −κ0½1þ b2 cosðξy þ πÞ� and
κ−ðξyÞ ¼ −κ0ð1þ b2 cos ξyÞ representing the intracell
and intercell coupling parameters and b1 ¼ 50, b2 ¼ 0.5,
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a is lattice constant, ω0 is the premodulation on-site energy,
kx is the Bloch wave number, γ1, γ2 ≥ 0. The two
imaginary parameters, −iγ1 and iγ2, respectively, represent
loss and gain, which introduce non-Hermiticity. ξy and ξz
are two parameters modulating the hopping and on-site real
energy terms. Hence, the eigenstates of Eq. (1) are bundles
on a 3D base manifold, in which kx identifies with
kx þ 2π=a, ξy with ξy þ 2π, and ξz with ξz þ 2π. Thus,
the base manifold is isomorphic to a 3D torus, which is also
isomorphic to a 3D Brillouin zone. Consequently, we can
regard ξy, ξz as two synthetic dimensions, which, together
with the reciprocal dimension kx, make the system
described by Eq. (1) effectively a 3D periodic system.
In the Hermitian limit, one has γ1, γ2 ¼ 0, and Eq. (1)

gives twofold degenerate points in the synthetic-reciprocal
space at ðkx; ξy; ξzÞ ¼ ð�π=a;�π=2;�π=2Þ, as shown in
Fig. 1(a). We analyze the degenerate point at ðπ=a; π=2;
π=2Þ. In its vicinity, the Hamiltonian is, retaining the linear
terms,

H ¼ ω0σ0 þ dxσx þ dyσy þ dzσz; ð2Þ

where σx, σy, σz are Pauli matrices and dx ¼ −2b2κ0×
ðξy − 0.5πÞ, dy ¼ −κ0ðkxa − πÞ, and dz ¼ b1ðξz − 0.5πÞ.
Equation (2) takes the form of a Weyl Hamiltonian [17],
and the dispersion is linear in all directions.
We characterize the topology of the degenerate point by

calculating its Berry charge. To do so, we integrate the
Berry curvature over a surface enclosing the point [gray
spherical shell in Fig. 2(a)] [28,29,40]:

Cm ¼ 1

2π

Z
∂Ω

A⃗ðμ⃗Þ · dS⃗; ð3Þ

where A⃗ðμ⃗Þ ¼ ih∇μ⃗ψmðμ⃗Þj × j∇μ⃗ψmðμ⃗Þi is the local Berry
curvature, with ψm being the Bloch wave functions of the
band and μ ¼ kx; ξy; ξz. Our calculations show that
C ¼ �1, confirming that the twofold degenerate point is
a SWP [41]. The charges of the two SWPs at
ðπ=a;�π=2; π=2Þ are opposite, indicating that they form
a pair of source and sink for the Berry flux and must be
connected by a Fermi arc, as will be shown later.
Next, loss and gain −iγ1; iγ2 are introduced to the on-site

terms of the Hamiltonian, together with a term −iγ0
denoting intrinsic background loss. The eigenfrequencies
of Eq. (1) take the form

ω̃1;2 ¼ ω0 − i
2γ0 þ γ1 − γ2

2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jκðkx; ξyÞj2 − ðγ1 þ γ2 − 2ib1 cos ξzÞ2

q
: ð4Þ

In doing so, EPs are spawned from the SWP. The SWP
morphs into a continuous closed trajectory on the kxξy
plane at ξz ¼ 0.5π, at which the real and imaginary parts
of the eigenvalues are identical, as shown in Figs. 1(f) and
1(g). This trajectory is a SWER, with its shape given by

ðb2cosξyÞ2þ½1−ðb2cosξyÞ2�cosðkxaÞ¼
�
γ1þγ2
2

ffiffiffi
2

p
κ0

�
2

−1:

ð5Þ
Figures 1(h) and 1(i) show the bands on the kxξz cut plane
at ξy ¼ 0.5π, intersecting the SWER at the two points
marked by the red stars.
The emergence of the SWER gives rise to richer

topological properties, which can be characterized at two
different levels. First, similar to the SWP, we can compute
the Berry charge of the SWER by integrating the Berry

FIG. 1. (a) SWPs in the synthetic-reciprocal space. (b) Schematic of the SWP located at ðπ=a; π=2; π=2Þ. (c), (d) Band structures in the
Hermitian limit in the kxξy plane at ξz ¼ 0.5π and kxξz plane at ξy ¼ 0.5π, respectively. The SWP is marked by the red dot.
(e) Schematic of the SWER located at ðπ=a; π=2; π=2Þ. (f), (g) Real part and imaginary part of the spectrum in the kxξy plane at
ξz ¼ 0.5π in the non-Hermitian system. A SWER is identified and marked by the red circles. (h), (i) The same system viewed on kxξz
plane for ξy ¼ 0.5π.
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curvature over an enclosing surface, shown in Fig. 2(b).
Our results show that C ¼ �1, implying that the SWER
retains the SWP’s topological charge, despite the inclusion
of non-Hermiticity. This is further verified by the Berry
curvature of two SWPs and SWERs at ðπ=a;�π=2; π=2Þ,
as shown in Figs. 2(c) and 2(d). The results also suggest
that Fermi arcs survive the inclusion of non-Hermiticity as
detailed in the following experimental section. These
results agree with related theoretical calculations [28].
Second, the EPs forming the SWER also possess non-
Hermitian topology. Unlike Hermitian degeneracies, the
topological properties of an EP can be characterized by two
methods: eigenvalues and eigenvectors [42,43]. The eigen-
value holonomy around an EP generates a winding number
[43–45], given by ϒ ¼ P

2
j;j0¼1

ϵj;j0νj;j0, where j and j0

index the states and j ≠ j0, ϵj;j0 permutes j and j0,
μ ¼ kx; ξz. The term

νj;j0 ¼ − 1

2π

I
∇μ⃗Arg½ωjðμ⃗Þ − ωj0 ðμ⃗Þ� · dμ⃗ ð6Þ

is called the eigenvalue vorticity [42,46]. By encircling an
EP on the SWER as shown in Fig. 2(e), we find ϒ ¼ 1.
In addition, driving the eigenstates (Bloch wave func-

tions) around the same loop [Fig. 2(e)] produces a non-
Hermitian Berry phase given by

θ ¼
I

ihψmðμ⃗Þj∂μ⃗ψmðμ⃗Þi · dμ⃗: ð7Þ

Because the evolution of eigenstates is bounded to the
non-Hermitian manifold that has two eigenvalue sheets

connected at the branch cut, two complete cycles along the
encircling path are required for both eigenstates to recover.
The total Berry phase after two cycles is θ ¼ π [28]. Hence,
the eigenstate winding number is W ¼ 1=2.
Experimental results.—The non-Hermitian model is

shown in Figs. 3(a) and 3(b). Experimentally, we construct
a 1D finite PC withN ¼ 24metal cavities and a circuit part,
shown in Fig. 3(c). On-site orbitals are mimicked by the
first-order cavity resonance. The pressure profile of the on-
site mode is shown at the upper-right panel in Fig. 3(c).
Because the eigenfrequency of cavities can be adjusted by
the height of cavities, the synthetic dimension ξz associated
with the on-site modulation can be straightforwardly
implemented. The cavities are connected by small tubes
to implement the tight-binding hopping κðkx; ξyÞ. The
Bloch wave number kx is naturally realized by the
periodicity of the PC. At the same time, by further
modulating the tubes’ cross-sectional areas, the synthetic
dimension ξy is realized. The non-Hermiticity in Eq. (1) is
introduced as controlled loss and gain. There is no
acoustical gain material in nature. To achieve controlled
non-Hermiticity, an in-house-designed active unit com-
posed of a loudspeaker, a microphone, and a feedback
circuit is installed at the top of each cavity. The amplitude
and phase of the emission are precisely controlled accord-
ing to the signal measured by the microphone. Gain and

FIG. 2. The gray surfaces enclose (a) the SWP and (b) the
SWER for calculating topological charge. And the yellow plane
represents the kxξy plane at ξz ¼ 0.5π. (c),(d) The distribution of
the Berry curvature of Hermiticity and non-Hermiticity in the
kxξy plane at ξz ¼ 0.5π, respectively. The color scale indicates the
magnitude of the Berry curvature. (e) Schematics of eigenfre-
quency trajectories for looping around the EP in the kxξz plane at
ξy ¼ 0.5π, which are used to calculate a quantized Berry
phase characterizing the EP. The encircled EP is at
ðkx; ξzÞ ¼ ð43π=50a; π=2Þ. The bottom is a projection of the
loop on the kxξz plane.

FIG. 3. (a) The 1D non-Hermitian model. The dotted box
indicates the unit cell. (b) Loss and gain are introduced to on-site
terms and modulated by functions ω�ðξzÞ. The couplings are
modulated by functions −κ�ðξyÞ. (c) The experimental system.
The circuits connecting the loudspeakers and microphones at the
top of cavities achieve active control of gain and loss in each
cavity. The left inset is an enlarged view of a unit cell
(a ¼ 210 mm). The pressure profile of the cavity’s mode is at
the right.
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loss are introduced when the emission of the loudspeaker is
in phase and antiphase with respect to the sound at the top
of the cavity, respectively [47]. It should be pointed out that
we overcome the self-excitation effect caused by the
feedback circuit in gain condition.
We begin with a two-cavity setup to obtain the system

parameters of the acoustic system. By using the Green’s
function and a least-square fitting method [43,48,53], the
system parameters are found to be ω0 ¼ 9953.8 rad=s,
κ0 ¼ 118.7 rad=s, γ0 ¼ 30.8 rad=s, γ1 ¼ 67.8 rad=s, and
γ2 ¼ 33.9 rad=s. Details of the two-cavity experiments and
fitting procedures are shown in Ref. [47].
Experimentally, we place an acoustic source at the

leftmost cavity of the PC and measure the pressure
response spectra in each cavity with a microphone.
Fourier transform is then applied to convert the spatial
coordinate x to reciprocal coordinate kx. First, we verify the
existence of the SWP. The two synthetic coordinates are set
at ξy ¼ ξz ¼ 0.5π, as indicated by the gray cut plane at the
left of Fig. 4(a). The measured dispersion relation (real part
of the frequency) is shown at the left of Fig. 4(b), wherein a
continuous band is seen. This band is linear in the vicinity
of kx ¼ π=a, which agrees well with the theoretical
prediction. Next, the non-Hermiticity is introduced by
turning on all the active units, which are set to staggeringly
generate the gain and loss. In the measured dispersion

shown at the right of Fig. 4(b), a flat plateau is developed
near kx ¼ π=a. This plateau corresponds to the parity-time-
broken phase, at which the real parts of the eigenfrequen-
cies are degenerate. The two endpoints of this plateau are
two EPs on the SWER. We further obtain the dispersion
at 11 different ξy with ξz ¼ 0.5π, as shown in Fig. 4(c).
The dispersion curves are gapped for ξy < 0.37π and
ξy > 0.63π. The plateau can be clearly identified in
0.44π ≤ ξy ≤ 0.56π. The plateau’s width increases until
ξy ¼ 0.5π and then decreases and eventually vanishes at
ξy ¼ 0.63π. The endpoints of the plateau clearly delineate a
closed loop on the kxξy plane at ξz ¼ 0.5π, which validates
the existence of the SWER. We repeat the measurement
with ξy ¼ 0.5π and then tune ξz to 7 different values. In the
results plotted in Fig. 4(d), we can identify a gap that closes
only at ξz ¼ 0.5π in the formation of a plateau. From this
observation, we conclude that the SWER indeed lies on the
kxξy plane at ξz ¼ 0.5π.
The presence of the SWPs indicates the existence of

Fermi arcs that are 2D surface states pinned by a pair of
SWPs with opposite topological charges in a finite-sized
system. In our system, the Fermi arcs are observed as 0D
topological boundary modes localized at the two ends of
the real-space PC. Fermi arcs are generally dispersive
curves in the reciprocal dimensions. In the Hermitian
case, sublattice symmetry protects the Fermi arcs to be

FIG. 4. (a) Schematic of using different planes to cut two band structures. (b) Measured dispersions of the 1D PC. After we add
additional loss and gain in the cavities, the point evolves into a nodal line at eigenfrequency ω0 at ξy ¼ ξz ¼ 0.5π. The dashed lines
correspond to the numerically calculated band structures of the designed Hamiltonian. (c) For different values of ξy at ξz ¼ 0.5π, the
images show the evolution of band structures. (d) is similar to (c), but it is for different values of ξz at ξy ¼ 0.5π. The SWP becomes a
SWER and exists in the kxξy plane at ξz ¼ 0.5π in the synthetic momentum space.
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near-zero-energy flat bands in ξy ∈ ð−0.5π; 0.5πÞ at
ξz ¼ 0.5π, as shown in Fig. 5(a). In the non-Hermitian
case, the finite system obeys anti-pseudo-Hermiticity and
parity-time symmetry, such that the real parts of the
spectrum are symmetric and the two Fermi arcs are pinned
to zero real energy as flat bands that connect the SWERs
[Fig. 5(b)] (see Ref. [47] for more details). We have
measured the Fermi arcs composed of edge states exper-
imentally for both the Hermitian and non-Hermitian cases
at a series of ξy, as shown in Figs. 5(a) and 5(b). Slight
deviation from zero energy is attributable to experimental
errors. Figures 5(c) and 5(d) show the measured edge states
at ξy ¼ 0. It is noteworthy that the flat Fermi arcs, the
SWER, and the bulk states therein have identical real
eigenfrequencies—an interesting property useful for appli-
cations such as wave routing, which we demonstrate
in [47].
Conclusion.—We have experimentally realized a SWP

and a SWER in a 1D non-Hermitian PC with two synthetic
dimensions. Our results show that EP structures appearing
in the Bloch bands of non-Hermitian systems can be
investigated in hybrid reciprocal-synthetic systems, which
are experimentally more convenient and versatile compared
to systems with pure spatial periodicity. And the fact that
SWERs can merge to realize a topological phase transition
dependent only on the strength of the non-Hermiticity
allows for a new route to obtaining tunable phononic
topological materials. We have also developed an acoustic
system with the successful implementation of actively
tunable loss and gain, which can serve as a platform for
studying more sophisticated non-Hermitian phenomena,
such as non-Hermitian skin effects [25,54,55], EP chains
[43], and EP links [56].
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