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Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-
body behavior. Fermionic atoms in ultracold atomic mixtures can act as mediators, giving rise to long-range
Ruderman-Kittel-Kasuya-Yosida—type interactions characterized by the dimensionality and density of the
fermionic gas. Here, we propose several tuning knobs, accessible in current experimental platforms, that
allow one to further control the range and shape of the mediated interactions, extending the existing
quantum simulation toolbox. In particular, we include an additional optical lattice for the fermionic
mediator, as well as anisotropic traps to change its dimensionality in a continuous manner. This allows us to
interpolate between power-law and exponential decays, introducing an effective cutoff for the interaction
range, as well as to tune the relative interaction strengths at different distances. Finally, we show how our
approach allows one to investigate frustrated regimes that were not previously accessible, where symmetry-
protected topological phases as well as chiral spin liquids emerge.
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Introduction.—Long-range interactions between ultra-
cold atoms are known to be the source of exotic many-body
phenomena, including supersolid [1-6], magnetic [7-12],
and topological phases [13-23], soliton trains [24-27],
quantum droplets [28-30], or roton spectra [31,32].
Besides, if the long-range interactions appear between
fermionic atoms, they can be harnessed to build analog
simulators for quantum chemistry [33-35] and high-energy
physics [36-39]. Unfortunately, these interactions do not
appear naturally between neutral atoms, since they gen-
erally interact through (local) elastic collisions [40]. This is
why finding ways to engineer and control effectively such
long-range atomic interactions is one of the most pressing
issues in atomic physics today.

As it occurs in nature, a conventional way of obtaining
long-range interactions is through the exchange of medi-
ating particles. For example, the exchange of photons
through the atomic optical transitions leads to dipolar
interactions (1/7°) in the case of highly magnetic [41—
43] and Rydberg atoms [44—47], or dipolar molecules [48—
51]. One can extend their range by shaping the photonic
field with cavities [31,52-55] or nanophotonic structures
[56-58]. However, such photon-mediated interactions are
accompanied by dissipation, which needs to be controlled
to profit from them. An orthogonal direction that is recently
being considered consists in using fermionic atoms in ato-
mic mixtures as mediators [26,32,59-75]. Such fermion-
mediated interactions have been predicted [66,67,76] to
lead to the Ruderman-Kittel-Kasuya-Yosida (RKKY)-type
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interactions appearing in solids [77-79], which have a
power-law, oscillating nature, fixed by the dimensionality
and density of the Fermi gas. With the recent experimental
observation of such interactions [26,69], a timely question
that has been scarcely explored [32] is how one can further
tune those interactions to be able to explore new phenom-
enology with them.

In this Letter, we take advantage of the flexibility offered
by ultracold atomic platforms to control the range and
shape of long-range fermion-mediated interactions, going
beyond the conventional RKKY-type interactions encoun-
tered in solid-state systems. This allows us to design a
quantum simulation toolbox that can be used to prepare, for
instance, frustrated phases that are not accessible using
other approaches. The Letter is organized as follows. First,
we review how to derive the effective fermion-mediated
RKKY interactions for a Fermi-Bose mixture of ultracold
atoms. We then introduce an additional optical potential for
the Fermi gas and show how the range of the interactions
can be interpolated from a power law to an exponential
decay by tuning the ratio between the periodic potential and
the confining harmonic trap. This allows one at the same
time to select the ratios between interactions at different
distances within a nonvanishing range. We then show how,
for a hardcore bosonic chain immersed in the fermionic
cloud, the resulting interactions can be used to prepare
frustrated phases with nontrivial topological properties.
Finally, we explore an extra tuning knob by continuously
changing the dimensionality of the cloud using different
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harmonic frequencies in each spatial direction. This control
allows one to further tune the interaction ratios that, as we
indicate, might be useful to obtain 2D chiral spin liquid
phases [80].

Effective fermion-mediated interactions.—Let us con-
sider an atomic mixture as depicted in Fig. 1(a), where one
species corresponds to noninteracting spinless fermions
trapped by a harmonic potential,

m
V(x,y,z) = 7f [03x* + w3y* + w?Z?]. (1)

The fermionic Hamiltonian reads f,; = ", €,¢4¢,, where

e,(f) is the (creation) annihilation operators associated with

the nth eigenstate of this oscillator, with energy ¢,. For
concreteness, and without lack of generality, we assume
that the other atomic species is bosonic and it is trapped in
an optical lattice, Vy,,(r), with fixed lattice spacing d. While
Pauli blocking prevents s-wave interactions among spin-
polarized fermions, one can still account for boson-boson
and boson-fermion collisions. This leads to a bosonic
Hamiltonian of the form

 Vp=0 V/Vi>1
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FIG. 1. (a) Two bosonic atoms (white) separated by distance r

and trapped in an optical lattice (red) experience an effective
long-range interaction mediated by a Fermi gas trapped in an
harmonic potential (blue). (b) The contact Bose-Fermi inter-
actions (gyy) virtually populates the conduction band of the Fermi
gas. (¢) An additional oscillatory potential induces a gap between
the valence and conduction gap, exponentially damping the
mediated interactions. (d) By controlling the strength of the
trapping potential in an orthogonal direction, @_/®,, one can
continuously tune the dimension of the Fermi gas from 1D to 2D,
introducing additional modulating frequencies, as will be shown
in Fig. 4.

and a Bose-Fermi density-density interaction,
=g [ ¥ OF OO, O)

where the field operator ¢(r)[ji(r)] describes the annihi-
lation of a boson [fermion] and gy, (gy) is the bosonic
(interspecies) coupling constant, which is experimentally
tunable through magnetic Feshbach resonances [81].

Below the Fermi temperature, the N fermionic atoms are
occupying all states up to the Fermi energy, e = €y, and
the state can then be written as |Q) = [[V_, ¢;/0). In the
regime where fermionic timescales are much faster than the
bosonic ones and their interaction is weak, one can take
Hy=H,+H ¢ as the unperturbed Hamiltonian and H; as
a perturbation, obtaining an effective potential for the
bosons [66],

ﬁm—w+m+qﬂwwnMWﬁW%®w&
(4)

where G = 2mg; k¢/h*, and we define the Fermi mo-
mentum kg = /2mep/h. Here, the last term arises from
the second-order perturbation ,; |(m|H,|i)|*/ (E,, —¢F),
where the initial state |i) =|Q)|{r,}) belongs to the
ground-state manifold of A, for bosonic atoms placed in
positions {r, }, and |m) = &),¢,|Q)|{r,}) is a particle-hole
excited state outside the manifold, with energy E,,. Note
that due to the conservation of fermionic parity, fermions
needs to be exchanged twice to generate a potential, unlike
photons that can be exchanged only once. This has
important implications for the sign and shape of F, .
[82], which in this case only depends on the bosonic
separation F,,. ~ F(|r —r'|).

Since it will be useful to interpret the results of this
Letter, let us review here the properties of an untrapped free
Fermi gas with energy dispersion &) = (h*[k|*/2m;),
which provides a first approximation in the limit N > 1.
Analytical expressions in this limit can be found in all
spatial dimensions [78,83,84]. For example, in the one-
dimensional case (No, < @, ), F(r) expands in the limit
kpr> 1 as [83]

Fip(r) k_—l [cos(2kFr) + (5)

sin(2kgr)
Fr 7

2kFr

whereas in the two-dimensional case (0, = o, < @,/N),
it expands as [84]

1], cos(2kgr)
FZD(r) X —@ |:Sln(2k]:r) - 4kFr:| . (6)

In both dimensions, the interactions share some common
features: (i) the fermion-mediated interactions are attractive
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in the limit » — 0, regardless of the sign of g.;. The mean-
field intuition is that, for g,; > (<)0, the Fermi gas tends to
avoid (be attracted to) the bosons, reducing (increasing) the
fermionic density, and thus, the bosons feel more attracted
to this place. (ii) Asymptotically, they lead to longer range
interactions ~r~! (1D) and ~r~2 (2D) than dipolar ones
(~r~3). (iii) The interactions oscillate with an effective
length inversely proportional to kp. Thus, choosing the
wave vector of the bosonic optical lattice potential k; , one
can induce (anti)ferromagnetic interactions if k; = (2)kg,
or incommensurate ones (k; /kr € D).

For a sufficiently deep optical lattice for the bosons, only
its lowest motional bands get populated. Wannier functions
w;(r) centered at the lattice sites j become a convenient

description for the bosonic fields, ¢(r) = > wj(r)l;j [85].
Projecting in this basis the effective Hamiltonian of Eq. (4),
one obtains an extended Bose-Hubbard model:

N A U, o .
HEff - _tb Zbll bj, + 72”}(”;’ - 1) + Zvj’j/njbn;?,
(1d" J 77

(7)

with nearest-neighbor tunneling strength #, and on-site
interaction Uy, = gy, [ dr|w;(r)|*, where 1,, max |v; y| <
hw, . to satisfy the previous perturbative treatment. Here,

lg}%) are the (creation) annihilation operators of a bosonic

atom on site j, ﬁjb = E;l;j is the bosonic number operator,
and the effective potential v; ; terms can be obtained from
the perturbed potential of Eq. (4) as

v = G//drdr’F(|r—r’|)|wj(r)|2|wj/(r’)|2. (8)

Controlling the range of the interactions.—We now
show how the range of the effective interactions can be
controlled by adding a periodic potential V , sin(k ,x) to the
previous fermionic trap in the 1D case, V(x) =V, (x/x,,)?,
where V), =hw, /4 and x,,=[h/(2m;w,)]'/?, as illustrated
in Fig. 1(c). In the following, we fix the number of fermionic
atoms, while we vary the ratio V,/V;, by modifying the
depth of the periodic potential. It is expected that a value of
V, #0 opens up a gap in the energy dispersion of the
fermionic excitations, introducing a cutoff in the interaction
range if the Fermi energy lies within the band gap [see
Fig. 1(b)]. This is guaranteed by choosing an appropriate
wave vector k, for the fermionic optical lattice, such that
kpx, ~ v/ N and the oscillatory potential maximally hybrid-
izes with the N — 1 nodes of the highest occupied state.

In Fig. 2(a), we show the fermion-mediated interaction
appearing in a 1D Fermi gas for two values of V,/V,
corresponding to the pure harmonic case (V,/V), =0,
dashed green) and a ratio V,/V, = 400 (solid red). We
observe how the periodic potential tends to (exponentially)
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FIG. 2. (a) Effective potential between two atoms in one
dimension mediated by a Fermi gas trapped in an harmonic trap
with (green) and without (red) an extra periodic trap of strength
V,/V, = 400. Markers indicate the oscillation maxima. (b) Value
of the maxima for increasing values of V,/V,. The inset

shows the decay length ¢ of a fitted Yukawa interaction,
~expl|—kgr/(zf)]/r. (c—d) Strength of the second v,/v; (c)
and third v3 /v, (d) neighbor interactions as a function of V,/V/,
and the effective lattice spacing krd. Here, the bosonic Wannier
function wj(r) is approximated by a gaussian distribution with,
Xyidqn/d = 0.17, consistent with a lattice wavelength A =
784.7 nm for 8Rb. See Ref. [85] for a more thorough discussion
about the experimental parameters chosen for this and the rest of
the figures.

cut the range of the interaction, inducing a purely positive
potential for distances kzr > 2. In Fig. 2(b), we plot the
maximum relative values of the fermion-mediated inter-
actions at the oscillations for increasing values of V,/V,
where it is more evident the transition from a power-law
decay for small V,/V, to an exponentially decaying
Yukawa-like interaction when V,/V, is large. We can
therefore control the effective interaction range, given by
the exponential decay length #, which is exponentially
reduced by the introduced gap ~V,/V,, as £~ e=*V»/Vi
(inset) [85].

Besides, playing with the effective lattice separation of
the bosonic species krd (which can be controlled through
the frequency of the harmonic trap, adjusting k, accord-
ingly), one can identify diverse choices of induced inter-
actions, as we illustrate in Figs. 2(c) and 2(d). There, we see
for example that there are regions for V,/V, and kpd
(colored in white) where the potential for the nearest and
next-nearest neighbors coincide v, & v, while interactions
among longer distance atoms are very weak, v;/v; = 0.
This is important, as such potentials can be the source of
frustrated quantum many-body phases.

Quantum simulation toolbox for frustrated phases.—To
illustrate the last point, we analyze the phase diagram of a
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FIG. 3. (a) Real-space configuration of the CDW, (left), where

spheres of different sizes correspond to an alternating atomic
occupation, and frustrated BOW (right) with a dimerized bond
structure. (b) S(g) as a function of kyd for a chain with L = 60
sites and bosonic density p = 1/2, for V, =0. The phase
diagram presents a staircase structure, where every step corre-
sponds to a CDW, characterized by a peak in S(g). (c) Value of §
at the peak, Sy, as a function of krd and V,/V,,, showing how
the CDW orders melt for sufficiently large values of V,/V,,
giving rise to a frustrated BOW. (d) S,,.x and Berry phase y as a
function of kpd for V,/V, =680, showing the nontrivial
topological nature of the BOW phase. Real-space configuration
of the BOW phase for L = 40, showing (e) dimerized bonds and
(f) localized edge states at the boundaries. Parameters as in Fig. 2.

1D chain of hardcore bosons (U,/t, - oo) whose inter-
actions are mediated by a 1D Fermi gas. The different
phases can be distinguished using the structure factor,
S(q) = (1/L*) Y, j(6Absab)e'ri=r)), where 6} = AY — p
and p = 1/L " ;(A?) is the bosonic density.

Using a density-matrix renormalization group algorithm
[94] with fixed bond dimension D = 200, we calculate the
O-temperature ground state of a periodic chain with L = 60
sites and half-occupation, p = 1/2. Figure 3(b) shows how,
for V,,/V, =0, S(q) develops a clear peak at a certain
value ¢ that varies with kpd. The value at the peak S,,,x =
S(qo) can be used as an order parameter, revealing in this
case a staircase structure where every step corresponds to a
charge-density wave (CDW) phase with long-range order in
the atomic density. For each of them, the order is charac-
terized by the momentum ¢, and we labeled these phases
as CDW,. As an example, we depict in Fig. 3(a) the real-
space density for CDW_.

In Fig. 3(c), we can observe how the situation changes as
we increase the value of V,/V,. If the amplitude of the

periodic potential is sufficiently large, a disordered phase
emerges between the different CDW,, phases, where S(q)
vanishes at all momenta. This is an example of a frustrated
phase [95], where the density order melts due to quantum
fluctuations enhanced by competing interactions in a region
where the different density orders are close in energy. Instead,
a bond order develops [Fig. 3(a)], characterized by a nonzero

value of the order parameter B=1/L} ;(—1)/ (B;), with

Bj = 13;13#1 + H.c. [Fig. 3(e)]. This bond-order wave
(BOW) is a strongly correlated phase that cannot be accessed
through the conventional RKKY interactions [63], since it
requires comparable nearest and next-nearest neighbor inter-
actions, while further-range interactions should vanish. This
guarantees, in particular, that the classical energies corre-
sponding to CDW, and CDW_, patterns are similar, thus
enhancing frustration, while keeping the energy of CDW,
much higher. While this situation can be achieved for spinful
fermions with dipolar interactions [96], spinless particles
require v, /v; ~ 0.5 [97], which is achieved here by varying
the periodic potential, as shown previously. Similarly to the
fermionic case [96], here the BOW phase possesses nontrivial
topological properties. These are characterized by both a
nonzero quantized value of a Berry phase [85,98] [Fig. 3(d)],
and the emergence of localized protected states at the
boundaries [Fig. 3(f)]. We note that similar topological effects
are observed in nonfrustrated BOW phases induced instead
by dynamical optical lattices [99-105].

Controlling the shape of the interactions.—Let us finally
provide a way of tuning the interactions, which is unique in
atomic systems, enabled by the possibility to control the
effective dimensionality of the fermionic gas. In particular,
by superimposing three independent standing-wave poten-
tials, each w; in Eq. (1) can be controlled independently for
the three orthogonal directions by modifying their intensity
[see Fig. 1(d)]. Starting from @, = w, = @, and increasing
@y, one can go smoothly from a 3D fermionic gas to an
effective 2D one for w,, < w,/N [106,107]. Similarly,
increasing w, connects the 2D and the 1D case. Since the
power-law exponent of F(r) depends on the dimension D
as 1/rP, one expects that this method interpolates between
different integer values.

We now explore the effect of this dimensional crossover
in the effective interactions F(r) for the two- to one-
dimensional transition, while we maintain the bosons in
1D. Figure 4(a) shows F(r) as a function of the anisotropy
ratio w,/(w,N) and kpd, together with some cuts at the
ID-intermediate-2D regimes in Figs. 4(b)-4(d). Note that
the dependence on N is introduced because the crossover is
expected in the limit w,/w, ~ N, where the energy of the
highest-energy state is not enough to induce an excitation in
the z direction, and the interaction becomes effectively 1D.
We observe that the interpolation is more intricate than
initially expected. While in the limits w,/(w,N)>
(«)1 one recovers the expected 1D (2D) RKKY-type

083401-4



PHYSICAL REVIEW LETTERS 129, 083401 (2022)

511 Wolwy = NJ2

0] \/\/\/\/\/\/\
— 5l Y (b)
&3 S 517 Wiy = N5
3 S
3 X 04 \ ~A -
= 0. < L <)
3 g

2

(3]
€
N
]
g
1 X
=

Vo] + [Us ‘ IM | -1
0.751.001.25 0.751.001.25
ked/m ked/n

FIG. 4. (a) Mediated potential F(r) as a function of the
anisotropy ratio w./(Nw,) and effective atomic separation
krpr. Repulsive (attractive) forces are represented in red (blue).
(b)—(d) Value of F(r) for three anisotropy ratios (blue) indicated
in (a) with black dashed lines, compared to the expected
analytical results [Egs. (5) and (6)] (orange). (e) Cosine transform
of F(r) as a function of w,/(Nw,), where the dotted lines
correspond to the frequencies 2kr (red) and I~<1 (white). (f), (g)
Relation between the nearest-neighbor potentials v;,3 of a
kagome lattice with lattice spacing d, as a function of
®,/(w,N) and kpd. Dashed contour follows v; = 0. Here, we
took N = 250 and the rest of the parameters as in Fig. 2.

interactions, the intermediate dimensions acquire additional
beating oscillations due to the presence of different
harmonics in the potentials. This is more evident in
Fig. 4(e), where we plot the corresponding cosine transform
F(k). The frequency 2k, appears in all intermediate
dimensions and, through a careful analysis, we observe
that additional frequencies appear associated to discrete
values k, = 2kz[1 — nw./(w,N)]. The larger the value of
w,/w,, the smaller is the contribution associated to smaller
frequencies (as longer effective lengths that cannot fit the
constrained direction vanish). In particular, in the range
w,/(w.N) € (0.1,1/3), only contributions associated to k,

and l~<1 are dominant, leading to a smooth beating between
the two frequencies in the potential, as we fit in Fig. 4(c)
(dashed line). Such renormalization of the associated
Friedel oscillations can also appear, e.g., due to the dressing
with additional impurity atoms [74].

Despite the apparent complexity of the fermion-
mediated interactions within this dimensional crossover,
they might lead to the appearance of novel many-body
phases difficult to obtain otherwise. For example, recent
works have shown how chiral spin liquids can appear for
hardcore bosons in kagome lattices with long-range inter-
actions where the second and third neighbor terms are
similar and the nearest neighbor interaction cancels, i.e.,
(v, ® v3 and v; = 0) [80], a regime that is typically hard to

access with conventional approaches. In Figs. 4(f) and 4(g),
we make a search of whether such regime would be
accessible through this dimensional crossover, and find
that indeed there are configurations where v; ~ 0 (see
contour line), while v, ®v; (green marker). Although
further analysis is required, especially to account for the
effect of further-range interactions in the phase diagram,
our results show a promising avenue to investigate mag-
netic frustration and spin liquids states in 2D ultracold
atomic mixtures using tunable long-range interactions.

Conclusions.—We provide two strategies to control
fermion-mediated interactions in ultracold atomic mixtures
by modifying the fermionic confinement potential. First, we
add an extra periodic potential to open a gap in the fermionic
band. Then, we continuously modify the effective dimen-
sion of the fermionic gas by using anisotropic traps. In both
cases, we characterize the emergent long-range interactions,
obtaining a very versatile control over their range and shape.
Finally, we consider different examples where this extended
quantum simulation toolbox can lead to the exploration of
frustrated quantum many-body phases that are not easily
accessible with other approaches. Given the recent experi-
ments in this direction [26,69], and the relatively simple
tools that our proposal demands, we expect our results to
guide near-future experiments on the topic.
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