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To calculate the transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice
QCD, an important goal yet to be realized, it is crucial to establish a viable nonperturbative renormalization
approach for linear divergences in the corresponding Euclidean quasi-TMDPDF correlators in large-
momentum effective theory. We perform a first systematic study of the renormalization property of the
quasi-TMDPDFs by calculating the relevant matrix elements in a pion state at five lattice spacings ranging
from 0.03 fm to 0.12 fm. We demonstrate that the square root of the Wilson loop combined with the short
distance hadron matrix element provides a successful method to remove all ultraviolet divergences of the
quasi-TMD operator, and thus provides the necessary justification to perform a continuum limit calculation
of TMDPDFs. In contrast, the popular regularization independent momentum subtraction renormalization
(RI/MOM) scheme fails to eliminate all linear divergences.
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Introduction.—Parton distribution functions (PDFs) offer
an effective description of quarks and gluons inside a light-
traveling hadron [1,2], and play an essential role in under-
standing many processes in high-energy and hadron physics.
As a natural generalization of the collinear PDFs, the
transverse-momentum-dependent (TMD) PDFs also encom-
pass the transverse momentum of partons, and thus provide a
useful description of the transverse structure of hadrons.
They are also crucial inputs for describing multiscale,
noninclusive observables at high-energy colliders such as
the LHC [3]. Understanding the transverse-momentum-
dependent parton distribution functions (TMDPDFs) has
been an important goal of many experimental facilities
around the world, such as COMPASS at CERN, JLab
12 GeV upgrade, RHIC, and in particular, the forthcoming
Electron-Ion Collider in the U.S. Currently, our knowledge
of TMDPDFs mainly comes from studies of Drell-Yan
and semi-inclusive deep-inelastic scattering processes
where the transverse momenta of final state particles are

measured. In the past, various fittings have been carried out
to extract the TMDPDFs from these data (see, e.g.,
Refs. [4–9]). However, calculating the TMDPDFs from
first principles has been a challenge, as they are non-
perturbative quantities defined in terms of light-cone
correlations.
Thanks to the theoretical developments, especially of

large-momentum effective theory (LMET) [10,11], in the
past few years, such calculations have become feasible, but
full TMDPDFs from a lattice are not yet available. Instead
of the standard TMDPDFs involving light-cone Wilson
links, LMET proposes to calculate the quasi-TMDPDF
defined by a quark bilinear operator with a staple-shaped
Wilson link of finite length along the spacelike direction.
The finite link length regulates the so-called pinch-pole
singularity associated with infinitely long Wilson lines
[11]. The singular dependence on such a link length is then
canceled by the square root of a Euclidean Wilson loop
which, in the mean time, also cancels most of the ultraviolet
(uv) divergences (except for the endpoint logarithmic uv
divergences which need to be canceled by other means).
The renormalized quasi-TMDPDF can then be factorized
into the standard TMDPDF associated with a perturbative
hard kernel, a Collins-Soper evolution part and an “intrinsic
soft function,” up to power suppressed contributions
[11–13].
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Although there have been some preliminary lattice
studies of the Collins-Soper evolution kernel and the
intrinsic soft function [14–19], an important piece of
information is still missing in realizing the lattice calcu-
lation of TMDPDFs, that is, a systematic study of the
nonperturbative renormalization of quasi-TMDPDF oper-
ators. This is highly nontrivial, given that both the
regularization independent momentum subtraction (RI
MOM) [20] and the Wilson line or loop renormalization
fail to cancel the power uv divergences in the case of
straight-line quasi-PDF operators [21]. It is the purpose of
this Letter to perform such a systematic analysis and to find
a viable nonperturbative renormalization approach for the
quasi-TMDPDFs, such as the hybrid scheme [22] with self-
renormalization in the case of quasi-PDFs [23]. Indeed, our
study shows that the square root of the Wilson loop
combined with short-distance hadron matrix elements is
able to eliminate all uv divergences of the quasi-TMDPDF
operator and thus ensures a well-defined continuum limit,
while the RI/MOM scheme fails in a way similar to that in
the quasi-PDF case.
Theoretical framework.—In LMET, the calculation of

TMDPDFs starts from the unsubtracted quasi-TMDPDF
defined as

h̃χ;γtðb;z;L;Pz; 1=aÞ ¼ hχðPzÞjOγtðb;z;LÞjχðPzÞi;
OΓðb;z;LÞ≡ ψ̄ð0⃗⊥;0ÞΓWðb;z;LÞψðb⃗⊥; zÞ; ð1Þ

where we have taken the unpolarized case with Γ ¼ γt as an
illustrative example, and assumed a lattice regularization
with spacing a. χðPzÞ denotes the hadron state with
momentum Pμ ¼ ðP0; 0; 0; PzÞ, and the quark bilinear
operator OΓðb; z; LÞ contains a staple-shaped Wilson link
Wðb; z; LÞ shown in Fig. 1 and defined as

Wðb; z; LÞ ¼ P exp

�
igs

Z
z

−L
ds n̂z · Aðbn̂⊥ þ sn̂zÞ
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�

× P exp
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�
; ð2Þ

where b ¼ jb⃗⊥j and z are the separation between the two
quark fields along the transverse direction n̂⊥ and longi-
tudinal direction n̂z, respectively. L should be large enough
to approximate the infinitely long Wilson link in the
continuum.
Such a definition suffers from the pinch-pole singularity

as well as the linear divergence from the Wilson link self-
energy, both of which are associated with the length L.
A more convenient “subtracted” quasi-TMDPDF is then
formed as [12]

hχ;γtðb; z; Pz; 1=aÞ ¼ lim
L→∞

h̃χ;γtðb; z; L; Pz; 1=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEðb; 2Lþ z; 1=aÞp ; ð3Þ

where we have assumed a lattice regularization and inclu-
ded 1=a dependence in the matrix elements. ZEðb; 2Lþ zÞ
is the rectangle Wilson loop with side lengths b and 2Lþ z.
In hχ;γtðb; z; Pz; 1=aÞ, the pinch-pole singularity, the linear
divergences, as well as the cusp divergences are canceled,
but there still remain logarithmic divergences arising from
the endpoint of the Wilson links which require further
renormalization.
Since the uv divergence is of a multiplicative structure

[24,25] and independent of the external state, the remaining
logarithmic divergences of the subtracted quasi-TMDPDF
can be removed either by dividing by another subtracted
quasi-TMDPDF at zero momentum and short distances b0
and z0, in analogy with the ratio scheme in the quasi-PDF
case [26], or by dividing by an appropriate ratio formed by
the quasi-PDF matrix elements at zero momentum and
short distances [27]. Here we choose the first option as an
illustrative example. In the above renormalization, we work
with physical on shell matrix elements only, and therefore
do not suffer from operator mixings due to off shellness in
the RI/MOM scheme. Nevertheless, for nonchiral lattice
fermion actions there could be mixings between the quasi-
TMDPDF operator with Γ ¼ γt and Γ ¼ γtγ3 due to chiral
symmetry breaking [27]. However, their numerical impact
appears to be negligibly small [14]. Therefore, for the
purpose of demonstrating the cancellation of uv divergen-
ces, we ignore it here.
We write the fully renormalized quasi-TMDPDF as

hSDRχ;γt

�
b; z; Pz;

1

b0

�
¼ hχ;γtðb; z; Pz; 1=aÞ

hπ;γtðb0; z0 ¼ 0; 0; 1=aÞ ; ð4Þ

where we have used a superscript SDR to denote the short-
distance ratio (SDR) scheme, and chosen the pion matrix
element in the denominator (denoted by the subscript π).
For simplicity, we have also chosen z0 ¼ 0. The singular
dependence on a on the rhs of Eq. (4) has been canceled,
leaving a dependence on the perturbative short scale b0. To
perform the renormalization, the pion matrix element

FIG. 1. Illustration of the structure of the Wilson line
Wðb; z; LÞ needed by the quasi-TMDPDF operator.
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hπ;γtðb0; 0; 0; 1=aÞ needs to be calculated nonperturbatively
on the lattice. In order to match the renormalized
quasi-TMDPDF to the standard TMDPDF, we also need
the perturbative results of the above matrix elements, for
which we can choose on shell quark external states. The
numerator of the rhs of Eq. (4) has been calculated
previously in dimensional regularization (DR) and modi-
fied minimal subtraction (MS) scheme in Ref. [13],
whereas the denominator is independent of χ and
reads as [28]

hMS
χ;γtðb0; z0; 0; μÞ ¼ 1þ αsCF

2π

�
1

2
þ 3γE − 3 ln 2

þ 3

2
ln½μ2ðb20 þ z20Þ� − 2

z0
b0

arctan
z0
b0

�

þOðα2sÞ: ð5Þ

With this, we can also convert the SDR result to the MS
scheme via

hMS
χ;γtðb;z;Pz;μÞ ¼ hMS

γt ðb0;0;0;μÞhSDRχ;γt

�
b;z;Pz;

1

b0

�
; ð6Þ

where b0 dependence cancels.
Another renormalization option that has been studied in

the literature is the RI/MOM renormalization [20] with the
perturbative matching to the MS scheme [13,29],

hMOM
χ;Γ ðb;z;Pz;pÞ
¼
X
Γ0

½ZMOMðb;z;p;1=aÞ�−1ΓΓ0hχ;Γ0 ðb;z;Pz;1=aÞ

¼ lim
L→∞

X
Γ0

Z̃MOMðb;z;L;p;1=aÞ�−1ΓΓ0 h̃χ;Γ0 ðb;z;L;Pz;1=aÞ;

ð7Þ

hMS
χ;γtðb;z;Pz;μÞ
¼
X
Γ
Tr½ΓhqðpÞ;γtðb;z;pzÞ�MSðμÞhMOM

χ;Γ ðb;z;Pz;pÞ; ð8Þ

where ½Z̃MOM�ΓΓ0 ¼ Tr½Γ0h̃qðpÞ;Γ� is the matrix element of
OΓ in the off shell quark state q with momentum p and
projector Γ0. The

ffiffiffiffiffiffi
ZE

p
factor gets canceled between the

nonperturbative renormalization factor ½ZMOM�ΓΓ0 ¼
Tr½Γ0hqðpÞ;Γ0 � and the bare hadron matrix element hχ , but
this does not affect the cancellation of singular L depend-
ence between them; thus one can safely take the large-L
limit. In Eq. (8) the dependence on the four-momentum p
on the rhs gets canceled between the two terms up to
discretization errors.
The off diagonal components of ZMOM can be sizable

[30] in general, but they turn out to be suppressed with the
momentum setup pz ¼ p⊥ ¼ 0 [14]. When the off

diagonal components of ZMOM are negligible, Eq. (7)
can be simplified into

hMS;MOM
χ;γt ðb; z; Pz; μÞ ≃

Tr½γthqðpÞ;γtðb; z; pzÞ�MSðμÞ
Tr½γthqðpÞ;γtðb; z; pz; 1=aÞ�
× hχ;γtðb; z; Pz; 1=aÞ: ð9Þ

Simulation setup.—In this Letter, we use the clover
valence quark on the 2þ 1þ 1 flavors (degenerate up
and down, strange, and charm degrees of freedom) of
highly improved staggered quarks and one-loop Symanzik
improved [31] gauge ensembles from the MILC
Collaboration [32–34] at five lattice spacings. We tuned
the valence light quark mass to be around that in the sea,
and the information about the ensembles and parameters we
used are listed in Table I.
Since the uv divergence shall be independent of the

hadron state, as shown in the quasi-PDF case [21,23], in the
following we will concentrate on the pion matrix element
h̃πðb; z; LÞ≡ hπjOγtðb; z; LÞjπi of the quasi-TMDPDF
operator Oγtðb; z; LÞ as an illustrative example, which
can be extracted from the following ratio

Rπðt1; b; z; L; a; t2Þ

≡ hOπðt2Þ
P

x⃗OΓ½b; z; L; ðx⃗; t1Þ�O†
πð0Þi

hOπðt2ÞO†
πð0Þi

¼ hπjOΓðb; z; LÞjπi þOðe−Δmt1 ; e−Δmðt2−t1Þ; e−Δmt2Þ;
ð10Þ

where Δm is the mass gap between the pion and its first
excited state which is around 1 GeV. One-step hypercubic
(HYP) smearing is applied on the staple-shaped link to
enhance the signal to noise ratio (SNR), and our previous
studies [21,23] on the quasi-PDF operator suggest that such
a smearing will not change the renormalization behavior of
the results. The source or sink setup and also the ground
state matrix element extraction are similar to those in
Refs. [21,23].
The square root of the Wilson loop ZEðb; 2Lþ zÞ is

expected to cancel the linear divergence in hπ , but its SNR

TABLE I. Setup of the ensembles, including the bare coupling
constant g, lattice size L3 × T, and lattice spacing a. mw

q is the
bare quark masses. The pion masses in the sea are ∼310 MeV,
and the valence pion mass is in the range of 280–320 MeV.

Tag 6=g2 L T a (fm) mw
q a csw

MILC12 3.60 24 64 0.1213(9) −0.0695 1.0509
MILC09 3.78 32 96 0.0882(7) −0.0514 1.0424
MILC06 4.03 48 144 0.0574(5) −0.0398 1.0349
MILC04 4.20 64 192 0.0425(5) −0.0365 1.0314
MILC03 4.37 96 288 0.0318(5) −0.0333 1.0287
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can be very poor at large b and/or 2Lþ z. The estimate of
ZEðb; 2Lþ zÞ with finite statistics can even lead to a
negative central value and make

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEðb; 2Lþ zÞp

ill
defined. But since ZEðb; 2Lþ zÞ !

L→∞
CðbÞe−VðbÞð2LþzÞ

where VðbÞ is the QCD static potential, we can fit
ZEðb; 2Lþ zÞ by a single exponential term at large L
and replace it with the fit result. Such a replacement is
essential to access the large b and z region at small lattice
spacing.
For the RI/MOM renormalization, we choose the to-and-

fro and transverse gauge links to be along the z and x
directions, respectively, and set the external momentum to
be ðpx; py; pz; ptÞ ¼ ð2π=LÞð0; 5; 0; 5Þ on all five ensem-
bles. Such a setup avoids the momentum along the link
direction, and thus there is no imaginary part in the quark
matrix element projected with γt. jpj ≃ 3 GeV is, on the
one hand, large enough to suppress the ir effect, and on the
one hand, not too huge to yield obvious discretization
errors at the largest lattice spacing.
The details of the Wilson loop extrapolation and L

dependence of hπ;γt and hMOM
π;γt can also be found in the

Supplemental Material [28].
Numerical results.—With a constant fit in the range

L ≥ 0.36 fm, one can extract the RI MOM renormalized
matrix element hMOM

π;γt ðb; z; 0; μMOM ≃ 3 GeVÞ. Thanks to
the cancellation between the L dependence of h̃π and
Z̃MOM, the L needed to reach saturation is much smaller
than that needed for hπ defined in Eq. (3). We interpolate
the results to b ¼ 0.12 fm with the cubic spline algorithm,
and plot the results at different lattice spacings in Fig. 2. It
is clear that the lattice spacing dependence becomes
stronger with either larger z or smaller a, implying that
there are residual linear divergences in hMOM

π;γt . In other

words, the RI MOM renormalization does not cancel all the
linear divergences. As suggested by the quasi-PDF study
[21], the residual linear divergence in hMOM

π;γt does not
appear at the one-loop level, and shall be gauge- and
action-dependent occurring at higher orders. Since the
matching between the RI MOM and MS scheme is calcu-
lated under DR in which the linear divergence is absent, we

expect hMS;MOM
π;γt to inherit the residual linear divergence

issue and do not consider it any more in the discussion to
follow.
We also repeat the above calculations with the overlap

fermion action, and find that the pion matrix elements are
independent of the fermion action within statistical uncer-
tainties, while the quark matrix elements needed by the RI
MOM renormalization can be very sensitive to the fermion
action. It is similar to what we observed for the quasi-PDF
with a straight Wilson link [21]. Thus, in the main text
above we only concentrate on the clover fermion action,
and leave the comparison between different fermion actions
to the Supplemental Material [28]. The discussion on the
lattice spacing dependence of the off diagonal components
of ZMOM can also be found there.
Now we consider the SDR scheme. As mentioned

earlier, the subtracted quasi-TMDPDF matrix element
contains logarithmic uv divergences, which shall be can-
celed by the short b and z matrix elements at zero
momentum. This is illustrated in Fig. 3 for the choice
z ¼ 0, where we have converted the SDR result to the MS
scheme using Eq. (6). As shown in the figure, the results at
different lattice spacings exhibit a convergence behavior
within errors. Moreover, there is an agreement with the
perturbative MS one-loop result (dense dashed line) in the
range of b < 0.4 fm with the MS scale 2 GeV. We also

FIG. 2. The RI/MOM renormalized matrix elements
hMOM
π;γt ðb0; z; 0; μMOMÞ defined in Eq. (7) using the clover fermion

action, with b0 ¼ 0.12 fm and μMOM ≃ 3 GeV. The statistical
uncertainty comes from bootstrap resampling. We use the cubic
spline algorithm to interpolate b to the same value for different
lattice spacings.

FIG. 3. The renormalized matrix elements hMS
π;γtðb; 0; 0; 2 GeVÞ

defined in Eq. (6) and the statistical uncertainty come from
bootstrap resampling. The dense dashed line is the one-loop
result with αsð2 GeVÞ in the MS scheme. We also show a
sparse dashed line for the perturbative result with αsð1=bÞ for
comparison.
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show sparse dashed lines for the one-loop results with
αsð1=bÞ for comparison.
In Fig. 4, we show the renormalized hMS

π;γt at b ¼ 0.12 fm
and 0.36 fm as a function of z. The same figures for other
values of b up to 0.72 fm, and for the case of the TMDwave
function matrix element can be found in the Supplemental
Material [28]. In contrast with the hMOM

π;γt shown in Fig. 2,

the hMS
π;γt shows good convergence in the continuum limit,

regardless of the value of z and b, and agrees with the
perturbative value well when b is small. Thus the renor-
malized TMD-PDF matrix element using the SDR scheme
can actually eliminate all the uv divergence and be
insensitive to the subtraction point b0 (or z0), and then
can be used for a state-of-the-art TMDPDF calculation on
the lattice.
Summary and outlook.—In this Letter, we study

systematically the renormalization property of the

quasi-TMDPDFs. By calculating the pion matrix elements
in the rest frame at five lattice spacings and applying
different renormalizations, we find that the RI/MOM
renormalized matrix element has an obvious residual linear
divergence. In contrast, the square root of the rectangular
Wilson loop can eliminate all the linear divergence in the
hadron matrix element of the quasi-TMDPDF operator, and
the remaining logarithmic divergence can be removed by
forming the ratio with a subtracted quasi-TMDPDF matrix
element at zero momentum and short b and z, thus leading
to a well-defined continuum limit.
In summary, this Letter provides a crucial test and

establishes a viable solution for the renormalization of
the quasi-TMD hadron matrix element on the lattice,
ensuring the existence of a reliable continuum extrapola-
tion. It paves the way toward the nonperturbative prediction
of both TMDPDF and TMD wave functions on the lattice.
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