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Calibration is a common experimental physics problem, whose goal is to infer the value and uncertainty
of an unobservable quantity Z given a measured quantity X. Additionally, one would like to quantify the
extent to which X and Z are correlated. In this Letter, we present a machine learning framework for
performing frequentist maximum likelihood inference with Gaussian uncertainty estimation, which also
quantifies the mutual information between the unobservable and measured quantities. This framework uses
the Donsker-Varadhan representation of the Kullback-Leibler divergence—parametrized with a novel
Gaussian ansatz—to enable a simultaneous extraction of the maximum likelihood values, uncertainties,
and mutual information in a single training. We demonstrate our framework by extracting jet energy
corrections and resolution factors from a simulation of the CMS detector at the Large Hadron Collider. By
leveraging the high-dimensional feature space inside jets, we improve upon the nominal CMS jet resolution
by upward of 15%.
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One of the most foundational tasks in high energy
physics (HEP) is the inference of an unobservable quantity
given a measured quantity, which is often referred to as
calibration. For example, the kinematic properties of a
given particle must be reconstructed from signatures
registered in various detector elements. This inference task
can be challenging when the reconstruction requires high-
dimensional inputs. Machine learning (ML) is a natural tool
for performing high-dimensional reconstruction, and there
has been significant progress in utilizing the ML method
for estimating the energies of various objects, including
photons [1], muons [2], single hadrons [3–8], and sprays of
hadrons (jets) [9–19] at colliders, kinematic reconstruction
in deep inelastic scattering [20,21], and neutrino energies in
a variety of experiments [22–27]. Further ideas can be
found in Ref. [28].
Abstractly, the calibration task can be described as

quantifying the relationship between two random variables
X ∈ RM and Z ∈ RN . Here, X is the measured quantity and
Z is the unobservable (“latent”) quantity (throughout this
Letter, uppercase letters represent random variables and
lowercase letters represent realizations of those random

variables). A reconstruction technique produces a function
ẑ∶RM → RN , which is determined by minimizing a loss
functional over sample data (real or synthetic). While ML
methods are effective even when M and N are large, most
existing methods have the undesirable property of being
prior dependent [29]. This means that ẑ depends on the
probability density pðzÞ used during training. As a result,
the calibration is not universal and caution must be taken
when applying it to different event samples. Furthermore,
some calibration methods simply produce a point estimate,
with no estimation of the corresponding uncertainty. In the
HEP context, this uncertainty is usually called the reso-
lution. Quantifying the reconstruction resolution is relevant
for a variety of purposes, including the computation of
significance variables [30,31] and background estimation
[32,33]. Various ML approaches for resolution determi-
nation have been recently studied for HEP [34–40], but
they typically require additional training or model com-
plexity. See Ref. [41] for a complementary approach to
frequentist inference.
In this Letter, we introduce a simple ML framework for

calibration that simultaneously estimates the following
quantities: (1) a prior-independent maximum-likelihood
calibration ẑðxÞ ¼ argmaxzpðxjzÞ, (2) a Gaussian resolu-
tion around ẑðxÞ, σ̂zðxÞ, (3) the log-likelihood ratio
log½pðxjzÞ=pðxÞ�, and (4) the mutual information between
X and Z, IðX;ZÞ. To extract ẑðxÞ and σ̂zðxÞ in a single
training, we use a novel Gaussian ansatz to parametrize
the log-likelihood ratio with an interpretable network
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architecture. Mutual information is a powerful statistic
for quantifying the (nonlinear) correlation between
two random variables, and it appears due to our choice
of loss function. After describing the Gaussian ansatz
construction, we illustrate the above features in a case
study involving jet reconstruction at the Large Hadron
Collider (LHC).
Our calibration method builds upon the Mutual

Information Neural Estimator (MINE) introduced in
Ref. [42]. With MINE, the Donsker-Varadhan representation
[43] of the Kullback-Leibler divergence [44] is used to
estimate IðX;ZÞ by training a network to minimize a
particular loss functional. We first show that a network
minimizing this loss functional yields the likelihood pðxjzÞ,
which in principle contains all the information necessary
for frequentist inference. Performing this inference in
practice, though, involves difficult optimization tasks,
which are even more difficult if one wants to extract the
resolution. With the Gaussian ansatz, we parametrize the
MINE network such that the inferred value, and especially
the resolution, are easy to extract after ML training.
The starting point for our calibration method is the

concept of mutual information (MI) defined as

IðX;ZÞ ¼
Z

dx dz pðx; zÞ log pðx; zÞ
pðxÞpðzÞ ; ð1Þ

where p denotes the probability density of the respective
random variable. This equation has the property that
IðX;ZÞ ¼ 0 if and only if X and Z are independent, which
is equivalent to pðx; zÞ ¼ pðxÞpðzÞ. Therefore, the MI
quantifies the interdependence between X and Z.
The MI is a special case of the Kullback-Leibler (KL)

divergence DKLðPkQÞ when P ¼ PXZ is the joint proba-
bility distribution of X and Z [i.e., pðx; zÞ], and Q ¼ PX ⊗
PZ is the product of the marginals [i.e., pðxÞpðzÞ]. It is well
known that the KL divergence can be cast in the Donsker-
Varadhan (DV) representation [45]:

DKLðPkQÞ ¼ sup
T∈T

fEP½T� − log ðEQ½eT �Þg; ð2Þ

where E• represents the expectation value over probability
density •, and the supremum is over the space of functions
T such that both expectations are finite.
Following the MINE construction in Ref. [42], we

use the DV representation to build an estimator for the
mutual information from a finite dataset. For functions
T∶RM × RN → R, we can place a lower bound on IðX;ZÞ
by minimizing a loss functional LDVR over T ∈ T :

IðX;ZÞ ≥ − inf
T∈T

LDVR½T�; ð3Þ

where the DV representation (DVR) loss is

LDVR½T� ¼ −ðEPXZ
½T� − log ðEPX⊗PZ

½eT �ÞÞ: ð4Þ

Given a finite dataset of ðx; zÞ pairs, the expectations in
Eq. (4) can be estimated from sample averages. To estimate
the second term, one can simply shuffle the x’s and z’s,
as done in Ref. [42]. The space of functions T can be
parametrized by neural networks, in which case the DVR
loss functional can be minimized using standard gradient
descent. As long as T is sufficiently expressive, the bound
in Eq. (3) will be saturated, so the minimum loss is an
estimate of −IðX;ZÞ [46].
Taking the functional derivative of the DVR loss func-

tional with respect to T, we see that the supremum of L½T�
is obtained when

Tðx; zÞ ¼ log
pðxjzÞ
pðxÞ þ c; ð5Þ

where c is any constant that we can set to zero without loss
of generality [in practice, we determine and then subtract c
numerically by noting that the second term of Eq. (4) is an
estimate of c in the asymptotic limit]. Therefore, if the MINE

is well trained, we can use T as an estimate of the log-
likelihood density ratio. As with most machine learning
applications, this requires that the space of neural networks
T is sufficiently expressive, that there are enough training
data, and that the gradient descent algorithm successfully
finds the minimum of Eq. (4). Given this, we can then
perform maximum likelihood inference given x:

ẑðxÞ ¼ argmaxzTðx; zÞ: ð6Þ

Crucially, this inference strategy for z is independent of the
prior pðzÞ, which is a property desirable for calibration
tasks. Unlike for standard regression [29], the learned
estimate ẑ does not depend on the distribution of z samples
in the training set [if desired, one could do Bayesian
inference and obtain the posterior pðzjxÞ by adding the
prior logpðzÞ to Tðx; zÞ].
If X does not contain complete information about Z, then

there will be uncertainty in our inference of z. Assuming the
likelihood pðxjzÞ is well approximated by a Gaussian
density, the uncertainty in the inference is given by the
covariance matrix:

½σ̂2zðxÞ�ij ¼ −
�
∂
2Tðx; zÞ
∂zi∂zj

�−1����
z¼ẑ

; ð7Þ

which is again prior independent.
So far, we have shown that the MINE network can be used

to perform frequentist inference. While T itself depends on
the prior pðzÞ, the inference ẑ and resolution σ̂z do not.
However, both the maximum likelihood estimate in Eq. (6)
and the local resolution in Eq. (7) are difficult to evaluate
numerically. In the case of maximization, the learned T
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may be highly nonconvex, and the true maxima difficult to
find using gradient descent. In the case of the second
derivative, its evaluation is numerically sensitive to the
choice of activation function in the MINE network. For
example, if one uses the common rectified linear unit
(ReLU) activation function or its variants, then all analytic
second derivatives of the network are zero.
In order to facilitate a numerical estimate of the maxi-

mum likelihood and local resolution, we introduce the
following Gaussian ansatz parametrization for T:

Tðx; zÞ ¼ AðxÞ þ ½z − BðxÞ�DðxÞ

þ 1

2
½z − BðxÞ�TCðx; zÞ½z − BðxÞ�; ð8Þ

where A∶RN →R, B∶RN → RM, C∶RN × RM →
SymðM; RÞ, and D∶RN → RM are each neural networks.
We call this the Gaussian ansatz, since it resembles the
logarithm of a Gaussian likelihood density. Unlike a
Gaussian likelihood, though, the Gaussian ansatz is highly
expressive, and is in fact a universal function approximator.
Specifically, any function fðx; zÞ that admits a Taylor
expansion in z around BðxÞ can be expanded in this form.
The functions AðxÞ and DðxÞ capture the zeroth and first
order dependences of f on z, respectively. The function
Cðx; zÞ captures any quadratic or higher dependence of the
Taylor expansion of f on z.
The Gaussian ansatz enables an elegant strategy to

extract Eqs. (6) and (7). Since the optimal Tðx; zÞ is
bounded from above, we can take DðxÞ to be everywhere
zero without loss of expressivity. In this case, T will achieve
critical values at z ¼ BðxÞ. Moreover, if C(x; BðxÞ) < 0,
then these critical values will be (local) likelihood maxima:

ẑðxÞ ¼ BðxÞ: ð9Þ

While the Gaussian ansatz does not necessarily protect
against local maxima, it does yield a numerical estimate of
the local resolution:

σ̂2zðxÞ ¼ −½C(x; BðxÞ)�−1: ð10Þ

Moreover, the (negative) loss of the Gaussian ansatz with
respect to the functional in Eq. (4) will be a lower bound for
the mutual information IðX;ZÞ, which is saturated in the
asymptotic limit of an infinitely large network with
infinite data.
The Gaussian ansatz is therefore capable of estimating—

from a single dataset of ðx; zÞ pairs and a single training—
the maximum likelihood inferred value of z given x, the
local resolution on that inference, and the mutual informa-
tion between X and Z. This can be achieved without having
to perform any additional optimization problems, derivative
estimations, or postprocessing beyond the single matrix
inversion in Eq. (10). In practice, we find it convenient to

start the training with nonzero DðxÞ to aid the convergence
of the model, and then numerically forceD → 0 through an
increasing L1 regularization. This helps the model achieve
a global, rather than local, minimum.
We now demonstrate the Gaussian ansatz on an exper-

imental collider physics task: determining jet energy
corrections (JECs) and resolutions (JERs) [53]. (At the
LHC, one typically calibrates transverse momenta pT
instead of energies, but the terms JECs and JERs are still
used.) Jets are collimated sprays of particles that are
produced ubiquitously in high energy collisions. One does
not have access to the “true” jet energy, however, because
its constituent particles are filtered through a complicated
and nonlinear detector response.
Assuming one has a good detector model, though, one

can generate truth-level quantities (GEN, corresponding to
Z) and then simulate the detector response (SIM, corre-
sponding to X). Performing a simulation-based calibration,
one can infer the true jet energy from a set of measured
particle momenta in a jet. The multiplicative JEC factor is
then defined such that the inferred jet momenta is

p̂T ≡ JEC × pT;SIM ≈ pT;GEN: ð11Þ

JEC factors are often further refined through a data-based
calibration using well-understood control samples, though
this is separate from the procedure considered here. The
JER factor arises because the inferred and generated pT
values in Eq. (11) are not identical. The JER is typically
expressed as a fractional quantity:

σ̂pT
¼ JER × pT;SIM: ð12Þ

In the language of statistics, the JER is a type of
“uncertainty,” since it represents the limited information
about Z contained in X. In the HEP context, though, this
quantity is instead called a “resolution”; see Ref. [29] for
further discussion.
The JEC factor is a function of the measured quantities,

primarily the detector-level jet pT and pseudorapidity η.
The JEC can be obtained from fits to simulation [54–58]
using a technique called numerical inversion [59]. The JER
can be also determined in simulation by fitting the peak
region of the detector response p̂T=pT;SIM to a Gaussian
distribution. Here, we consider an alternate (and arguably
simpler) approach to JEC and JER extraction.
For our case study, we use the Gaussian ansatz to

improve upon the JEC factors provided by the CMS
experiment in their 2011 public data release [60]. We use
the same 2011 CMS Open Simulation [61] samples as in
Ref. [62], which are based on dijets generated in PYTHIA6

[63] with a GEANT4-based [64] simulation of the CMS
detector. This dataset was translated from the original
CMS analysis object data ROOT-based format into an
easier-to-use MIT Open Data HDF5 format [65]. Each
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SIM event consists of a list of particle flow candidates
(PFCs), which are the reconstructed four-momentum and
particle identification (PID) for each measured particle.
The PFCs are clustered into jets, using the anti-kt jet
algorithm with R ¼ 0.5 [66–68]. For each jet, truth-level
GEN jet information is also provided, as well as the CMS-
prescribed JEC. CMS-prescribed JERs are estimated
using Ref. [53].
We select jets whose GEN transverse momentum is in

the range pT ∈ ½500; 1000� GeV. The lower bound of
500 GeV is to avoid any turn-on effects due to the pT;SIM >
375 GeV cut applied to the dataset as a whole. We require
that the GEN pseudorapidity satisfies jηj < 2.4, and that
jets are at least “medium” jet quality [69]. The latent
variable of interest is Z ¼ pT;GEN, and the measured
quantity X ¼ XSIM depends on the choice of ML archi-
tecture. All momenta are divided by a fixed scale of
1000 GeV, so that the data values are roughly Oð1Þ. In
total, 5 × 106 jets are used for training across the whole
pT ∈ ½500; 1000� GeV range.
We consider four different ML models of increasing

sophistication. (1) Dense neural network (DNN): The input
X consists only of the overall jet kinematic properties, with
X ¼ ðpT; η;ϕÞSIM, which is the same information used in
the CMS calibration procedure in Ref. [53]. Each of the
functions A, B, C, and D are constructed as fully connected
neural networks, with three hidden layers of size 64 and
ReLU activations. (2) Energy flow network (EFN): The
inputX consists of the entire set of PFC three-momenta from
the jet. Each of the functions A, B, C, andD are constructed
as energy EFNs [70]. EFNs are permutation-invariant
functions of point clouds inspired by the deep sets formalism
[71]. They take the form fðfp⃗igÞ ¼ F(

P
i pTiΦðηi;ϕiÞ),

which exhibits manifest infrared and colinear (IRC) safety.
For each EFN, theΦ and F functions consist of three hidden
layers of respective sizes (50,50,64) with ReLU activations.
Since C is a function of both X and Z, the Z is appended as
an input to the F function. (3) Particle flow network (PFN):
The same input features as the EFN but inserted into a PFN
[70,71], which does not impose IRC safety. PFNs take the
form fðfp⃗igÞ ¼ F(

P
iΦðpTi

; ηi;ϕiÞ). (4) PFN PID: The
same as the PFN model, but in addition to the three-
momenta of each PFC, the reconstructed PID is included
as an input feature. We follow the PID labeling scheme of
Ref. [70] for photon, charged hadron, etc. Each of these
models is trained for 200 epochs using the ADAM

optimizer [72], with a learning rate of α ¼ 10−4 and a
batch size of 2048. All model parameters are given an L2

regularization loss with weight λ2 ¼ 10−6. The D network
is given an overall L1 regularization loss of λD ¼ 10−3 to
slowly force it to zero by the end of the training. Every 50
epochs, α is reduced by a factor of 5, and λD is increased
by a factor of 10. To aid the numerical convergence,
each model is pretrained with a mean-squared-error
loss Lpre½B;C�¼EPXZ

½(BðxÞ−z)2þ(Cðx;zÞþcovðX;ZÞ)2�.

In Table I, we show the results of the training in a narrow
bin of pT;GEN ∈ ½695; 705� GeV. If our models yield
unbiased estimators of the GEN pT , then the inferred p̂T
distribution should be centered near 700 GeV, which it is
for all models. Adding more information to the model
should not decrease the mutual information, and if useful,
that information should improve the resolution. We see
indeed that the resolution improves with increasing model
sophistication, as does the mutual information IðX;ZÞ. The
resolution from the DNN, which uses the same information
as the CMS procedure, is marginally better than the
nominal CMS 2011 jet resolution from Ref. [53]. The
PFN PID model exhibits the best resolution, which is
roughly 15% better on average than the CMS baseline.
In Fig. 1, we show the distribution of σ̂pT

in the same
pT;GEN ∈ ½695; 705� GeV bin. As the model sophistication
increases, the resolution increases (i.e., the σ̂pT

shift
downward). The non-Gaussian behavior of the ML models

TABLE I. Gaussian ansatz results for the four ML models
compared to the CMS 2011 baseline [53]. On a test dataset of
GEN jets with pT ∈ ½695; 705� GeV, we show the inferred p̂T , its
resolution σ̂pT

, and the learned mutual information between X ¼
XSIM and Z ¼ pT;GEN. The � values correspond to the standard
deviation of the p̂T and σ̂pT

distributions across the test set, and
bold face indicates the best resolution and highest mutual
information.

Model Mean p̂T (GeV) Mean σ̂pT
(GeV) IðX;ZÞ

DNN 698� 37.7 35.7� 2.1 1.23
EFN 695� 37.3 32.6� 2.3 1.26
PFN 697� 36.9 32.5� 2.5 1.27
PFN PID 695� 35.1 30.8� 3.6 1.32
CMS 2011 695� 38.4 36.9� 1.7 � � �

FIG. 1. Learned JER distribution for the four models compared
to the CMS 2011 baseline. The dataset is the same as in Table I.
On average, the PFN PID exhibits 15% better resolution (i.e.,
smaller values) than the CMS default.
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is expected, since these models are exploiting additional
information beyond the pT . In principle, the resolution
should never degrade by adding more information, but we
do find a long right tail for the PFN PID model due to
incomplete ML convergence (we verified that the tail
shrinks and the resolution improves with increasing train-
ing statistics, but we were limited by machine memory
considerations). We conclude that the measured PFC
momenta, along with the PIDs, contain useful information
for jet energy calibration that is lost when only considering
the total jet momentum.
In this Letter, we presented an extension of the MINE

framework, the Gaussian ansatz, capable of simultaneously
performing frequentist inference, extracting Gaussian
uncertainties, and quantifying mutual information between
random variables. All of these tasks were performed in a
single training, with no additional postprocessing. Using
this ML framework, we were able to take advantage of the
full jet particle information in the CMS Open Simulation to
improve the measured jet resolution by approximately
15%. Studies by the ATLAS Collaboration have used
sequential calibration on a handful of observables to
improve their resolution [56–58], and the Gaussian ansatz
may allow for further improvements by allowing for
simultaneous calibrations of any number of input features.
We look forward to further developments in ML-based
calibration and correlations methods in HEP and beyond.

The code for the general-use Gaussian ansatz framework
can be found at Ref. [73]. The code and data for the jet
energy calibration study, in particular, are available at [74].
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