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We show that for a range of strongly coupled theories with a first order phase transition, the domain wall
or bubble velocity can be expressed in a simple way in terms of a perfect fluid hydrodynamic formula, and
thus in terms of the equation of state. We test the predictions for the domain wall velocities using the gauge/
gravity duality.
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Introduction.—The study of the dynamics of the expan-
sion of nucleated bubbles in a theory with a first order
phase transition has recently gained renewed interest in
view of gravitational wave detection experiments [1–5], as
the collisions and coalescence of bubbles as well as the
accompanying plasma in the early Universe may act as a
source of potentially detectable gravitational waves.
In this context, a key parameter of interest is the velocity

of the bubble wall. Despite the fact that there is a pressure
difference between the two phases, any initial accelerated
motion very soon stabilizes to a motion with a uniform
velocity. The conventional explanation is that the net force
is balanced by the friction of the metastable phase, which
is, however, very challenging to compute (see Refs. [6–8]
as well as Refs. [9–12] and references therein for recent
work in this direction). From this perspective, the domain
wall velocity is thus a consequence of nonequilibrium
dynamics of the theory.
In this Letter we argue that for a range of strongly coupled

theories which have a holographic dual, the physics of the
uniformmotion of the domain wall is much simpler and does
not require discussing the nontrivial nonequilibrium or
dissipative regime of the theory. Indeed, we show that the
domain wall velocity may be reliably computed using just
perfect fluid hydrodynamics and thus the equation of state.
We test the predictions using holographic modeling of the
process of bubble expansion both for nucleated bubbles of
a stable phase within an supercooled medium and for an
interface between two phases at different temperatures.

In order to be able to compare with numerical holographic
simulations, all the domain walls and bubbles that we
consider have a planar symmetry. The theories we model
are a confining-deconfined system and a bottom-up holo-
graphic model with two deconfined phases. We also
compare our predictions with some holographic results from
Ref. [13].
The holographic frameworks.—A method of describing

confinement in holographic settings is to start from a
geometry dual to a 4þ 1 dimensional quantum field theory
and compactify one of the spatial dimensions on a circle
[14–16]. Then the confining geometry takes the form of a
cigar in the compactified and holographic directions. The
circumference of the cigar is identified as the scale of
confinement in the resulting 3þ 1 dimensional field theory.
This geometry is usually called the Witten model in the
literature. In the case of 2þ 1 dimensional field theory, the
analogous confined geometry is the five-dimensional anti-de
Sitter (AdS5) soliton [17]. The deconfinement transition
takes place between the soliton and the thermal AdS5
geometry, i.e., a planar black hole (with one compactified
spatial coordinate) [18]. Constructing the domain wall
between the soliton and the black hole is challenging
because the topologies of the two geometries differ, but
have been found numerically by Aharony, Minwalla, and
Wiseman (AMW) [19]. An analogous solution for the
original Witten model has not been constructed so far;
hence, we focus here on the lower dimensional version
(which wewill refer to as theWitten model in the following).
A direct time-dependent numerical relativity simulation

of the Witten model is extremely difficult due to the
different topology of the two phases [20]. Hence in the
Witten model we will perform numerical evolution using a
boundary field theory description introduced in Ref. [21].
Therein, we found that the energy-momentum tensor

corresponding to the AMW domain wall solution can be
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accurately described using a boundary field theory descrip-
tion involving hydrodynamic degrees of freedom as well as
an additional scalar field γ which describes the interpola-
tion between the two phases with γ ¼ 0 corresponding
to the deconfined phase and γ ¼ 1 to the confined one.
The Lagrangian of the model is

L ¼ ½1 − ΓðγÞ�pðTÞ þ ΓðγÞ

−
1

2
cðT; γÞð∂γÞ2 − dðT; γÞγ2ð1 − γ2Þ ð1Þ

with ΓðγÞ ¼ γ2ð3 − 2γÞ. The energy-momentum tensor is
given by

Tμν ¼ ½1 − ΓðγÞ�Tconfining
μν þ ΓðγÞTdeconfined

μν þ TΣ
μν ð2Þ

Explicit formulas for the energy-momentum tensors and the
coefficients in Eq. (1) are given in the Supplemental
Material [22]. See also Refs. [23–25] for different effective
descriptions for first order phase transitions in holography.
As a complementary system we consider a bottom-up

holographic gravityþ scalar model in 4D bulk

S ¼ 1

2κ24

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
ð3Þ

with the potential

VðΦÞ ¼ −6 cosh
�

Φffiffiffi
3

p
�
− 0.2Φ4 ð4Þ

exhibiting a first order phase transition which was studied in
Refs. [26,27]. In this model both phases are deconfined and
have a holographic black hole description. The equation of
state is shown in Fig. 1. In this case we can perform full-
fledged numerical relativity simulations which will allow us
to confirm some qualitative features of the domain wall
expansion deduced from the simplified model simulations.
Since for this theory we can study the full holographic
evolution, our treatment retains all possible nonequilibrium
and dissipative features in the dynamics. Wewill refer to this
model as the nonconformal holographic model.

Qualitative structure of domain wall motion at strong
coupling.—Let us first study the evolution of the interface
between two phase domains: deconfined phase at T > Tc
and the confined phase. The pressure of the relevant phases
can be directly read off from the Tyy component of the
energy-momentum tensor (where y is the coordinate along
the domain wall). In Fig. 2(top left) we show the time
evolution of Tyy in the simplified model [Eqs. (1) and (2)].
Since the confined phase in the Witten model does not

depend on the temperature, one could interpret this con-
figuration as either a system at T > Tc or as an interface
between a high entropy phase at T > Tc and the low
entropy phase at T ¼ Tc. In Fig. 2(top right) we show a
plot of a counterpart of the latter configuration in the
nonconformal holographic model.
The conventional picture explaining a constant domain

wall velocity despite the imbalance of pressures on both
sides of the domain wall is that the net force coming from
the difference of pressures is balanced by friction induced
by the phase in front of the moving domain wall [8]. This
makes the determination of the domain wall velocity a very
challenging problem.
The holographic simulations shown in Fig. 2 show,

however, a quite different picture which arises at strong
coupling. Firstly, the pressures on both sides of the domain
wall are in fact very close to each other. Therefore, the
domain wall motion with constant velocity is in fact very
natural here and does not need any balancing friction force.
Secondly, the pressure difference between the phases is
supported on a hydrodynamic wave moving in the high
entropy phase away from the domain wall [28].
Plotting the Ttx component of the energy-momentum

tensor in the bottom of Fig. 2, we see that the high entropy
phase to the left of the domain wall is not static and has a

FIG. 1. Equation of state of the nonconformal model. Brown
dots indicate sample phases in the nucleated bubble simulations,
and pink dots indicate sample phases for the expanding interface
between phases at different temperatures.

FIG. 2. Evolution of pressure Tyy (top row) and the momentum
flow Ttx (bottom row) in the Witten model (left) and non-
conformal model (right). The high entropy (deconfined) phase is
on the left with the domain wall moving to the right (clearly seen
as a dip of Tyy).
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flow velocity in the same direction as the motion of the
domain wall. In fact, as wewill argue shortly, for the studied
holographic systems the flow velocity is very close to the
domain wall velocity.
Perfect fluid description.—From the numerical simula-

tions discussed above, we observe that the late time
configuration consists of a domain wall moving with a
constant velocity with balanced pressures on both sides and
a hydrodynamic wave moving in the opposite direction
supporting the pressure difference. We can therefore try to
glue together the two ingredients.
In the Witten model, there exists an exact holographic

solution for a moving domain wall, which is the static AMW
domain wall geometry boosted to the domain wall velocity.
Since in the AMW domain wall solution, the fluid in the
deconfined phase is at rest, this implies that in the boosted
solution, the velocity of the fluid would be equal to the
velocity of the domain wall. This is a crucial relation as it
translates the difficult problem of computing the domain
wall velocity into computing the fluid velocity in the high
entropy deconfined phase.
In addition, the pressure of the boosted solution would

be equal to the pressure at the first order phase transi-
tion p ¼ pc ≡ pðTcÞ.
For theconsistencyof thispicture it is important tocheck that

the (boosted) AMW domain wall is the only static (moving)
domain wall solution in our hydrodynamic description of the
Witten model. We studied numerically in the rest frame of the
wall such solutions of Eq. (1), where the fluid has nonzero
velocity on at least one side of the wall, and only found
interpolating solutions when the velocity vanishes on both
sides, i.e., the standard domain wall solution in the rest frame.
So we are left with finding a hydrodynamic solution

interpolating between a static plasma with p ¼ pA > pc
and a moving plasma with p ¼ pc and velocity v. We
would like to express v as a function of the pressure
difference. It is illuminating to first consider the problem in
the linearized approximation around some reference point:

p ¼ pref þ δp uμ ¼ ðcosh α; sinh α; 0Þ ð5Þ
where both δp and α are small. Then the solution for the
perfect fluid hydrodynamics for a left-moving wave is

δp ¼ fðxþ cstÞ α ¼ −
fðxþ cstÞ

ðεref þ prefÞcs
þ const ð6Þ

Implementing the above boundary conditions for the
pressures and velocities we obtain

vdomain wall ¼ vfluid ¼ tanh
Δp

ðεref þ prefÞcs
: ð7Þ

It turns out, however, that nonlinear hydrodynamic effects
are important. The generalization is called a simple wave
[29] (see also Supplemental Material [22]) and the counter-
part of Eq. (7) is

vdomain wall ¼ tanh
Z

pA

pc

dp
ðεþ pÞcs

≡ tanh
Z

TA

Tc

dT
Tcs

: ð8Þ

Note that the formula is expressed completely in terms of
equation of state data.
We have checked numerically that both the velocity of

the moving plasma and the velocity of the domain wall in
the Witten model agree well with Eq. (8) at small pressure
differences:

vdomain wall ≈ vfluid ≈
ffiffiffi
3

p ΔT
T

ð9Þ

within the precision of less than half a percent.
An analogous discussion for the nonconformal model

with two deconfined phases leads to a couple of subtleties. In
this case, both phases of the theory have a hydrodynamic
description, and we are faced with a choice which phase
(if any) to use for the hydrodynamic formula [Eq. (8)].
Moreover, an examination of our numerical holographic
simulations indicates that the stationary moving domain wall
will no longer be just a boosted version of the static solution
as fluid velocities on both sides of the domain wall are
not equal.
To understand this issue, it is convenient to pass to the

domain wall rest frame and use the standard relations
following from energy-momentum conservation which link
the hydrodynamic parameters of the two fluids on both
sides of the domain wall [7,30]:

vH
vL

¼ εL þ pH

εH þ pL
vHvL ¼ pH − pL

εH − εL
ð10Þ

where the subscripts H and L denote the high and low
entropy phase respectively. Let us evaluate vH from the first
equation

vH ¼ εL þ pH

εH þ pL
vL <

εL þ pH

εH þ pL
ð11Þ

where the inequality follows from vL;H < 1. The last ratio
can be evaluated from the equation of state. Assuming that
the pressures pL ∼ pH [as seen in Fig. 2(top right)], the
ratio is approximately equal to the ratio of entropies of the
two phases (using Ts ¼ εþ p). In the case of our model
this is a small number, similarly for any confinement-
deconfinement system due to the scaling with Nc. Since vH
is small in the rest frame of the domain wall, this means that
in the laboratory frame, the fluid velocity of the high
entropy phase should be close to the domain wall velocity.
Hence the conclusion is that the formula [Eq. (8)] should be
evaluated in the high entropy phase of the system.
In Fig. 3, we compare the formula [Eq. (8)] to the

domain wall velocities obtained from the holographic
simulations of the nonconformal model [Eq. (3)]. We find
a very good agreement for a significant range of pressure
differences with deviations occurring only for a quite large
velocity.
Nucleated bubbles.—Up until now we have discussed the

motion of a domain wall separating two (potentially infinite)
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phases at different temperatures. We will now move on to
the physically more relevant case of the expansion of a
nucleated bubble. As the initial conditions we take a small
bubble of the stable low entropy phase in a supercooled
medium of the high entropy phase at the same temperature
(cf. Fig. 1).
A sample velocity profile extracted from the holographic

simulation is shown in Fig. 4. We find that the fluid velocity
extracted from Ttt, Ttx, and Tyy assuming a perfect fluid
form of Tμν describes quite well the remaining Txx

component outside of the domain wall. This indicates that
dissipative effects are not really important for the flow apart
from the initial transient region.
Since the high entropy supercooled phase has smaller

pressure than the stable phase, the hydrodynamic simple
wave is now in front of the domain wall and moving in the
same direction. This is in contrast to the case of the domain
wall between high entropy phase with T > Tc and the low
entropy phase with T ¼ Tc, which we discussed above.
As the velocity profile extracted from the holographic

simulations indicates that the phase inside the bubble is at

rest (this is the so-called deflagration case), we can improve
in this case our formula [Eq. (8)]. Indeed using the notation
from Eq. (10), we see that vL ¼ −vdomain wall; hence
computing vH from Eq. (10) and passing back to the
laboratory frame we have

vdomain wall ¼
1

1 − εLþpH
εHþpL

vfluid ð12Þ

where vfluid is given by the hydrodynamic formula in the
high entropy phase. Hence we set

vdomain wall ¼
1

1 − εLþpH
εHþpL

tanh
Z

pC

pA

dp
ðεþ pÞcs

ð13Þ

where pC is the pressure inside the nucleated bubble, while
pA is the pressure of the supercooled environment. The
formula [Eq. (13)] is compared with the numerical results
from holography in Fig. 5.
An interesting phenomenological formula for the

nucleated bubble domain wall velocity in a holographic
theory was proposed in Ref. [13]:

v ¼ const ·
Δp
εA

ð14Þ
where the proportionality constant was fitted to be equal to
1.95 for a bottom-up scalar þ gravity model (with 5D bulk)
—see Fig. 7 in Ref. [13]. Our formula [Eq. (13)] does not
lead to an exactly linear dependence, but we can evaluate
the slope coefficient. Indeed, for small pressure differences
we are close to Tc, and hence we can evaluate Eq. (13) with
pL ¼ pH ¼ pc. Keeping in mind that in this limit εH ≃ εA
we get

vlinearizeddomain wall ¼
εH

εH − εL

1

csjT¼Tc|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
const

·
Δp
εA

: ð15Þ

For the theory considered in Ref. [13], the constant can be
evaluated to be 2.044. In Fig. 6 (left) we compare the two
linear coefficients to the data from Ref. [13]. We see that for

FIG. 3. Domain wall velocities obtained from holographic
simulations in the nonconformal model as a function of pressure
difference compared with formula (8) evaluated in the high
entropy phase. The high entropy phase is at a temperature
TA > Tc. The low entropy phase is at Tc.

FIG. 4. Perfect fluid velocities extracted from the energy
momentum tensor for the evolution of a nucleated bubble in
an supercooled medium.

FIG. 5. Nucleated bubble domain wall velocities obtained from
holographic simulations in the nonconformal model as a function
of pressure difference compared with formula (13) evaluated in
the high entropy phase.
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small velocities, the larger coefficient seems to work better.
In Fig. 6(right), we compare the same data with our full
nonlinear formula [Eq. (13)].
Another interesting physical aspect of the nucleated

bubble expansion is the energy balance and the fate of
the latent heat which gets released when the bubble of
the stable vacuum expands, which we discuss in the
Supplemental Material [22].
Discussion.—In this Letter, we showed that for various

strongly coupled theories with a holographic dual, the
domain wall velocities may be expressed just in terms of
the properties of the equation of state, employing perfect
fluid hydrodynamics. The resulting predictions agree
quite well with direct holographic simulations of a moving
interface between TA > Tc and Tc (see Fig. 3) and
nucleated bubbles (see Figs. 5 and 6).
A-posteriori, since the final formulas [Eqs. (8) and (13)]

are expressed in terms of the equation of state, holography is
not really needed for the evaluation of the domain wall
velocity. For us holography was, however, crucial in order to
check the validity of our formulas. We expect that the key
requirements for the applicability of our predictions is
the existence of a hydrodynamic description with a low
viscosity as well as a relatively large ratio of entropies of the
two phases.
This Letter leads to many open questions related to the

velocities and other properties of domain walls: (i) Our
results relate to a variety of physical systems, including
confinement and deconfinement, deconfined phase and an
supercooled one, and conformal and nonconformal theories,
related to holographic top-down and bottom-up scenarios
and to gauge theories in 2þ 1 and 3þ 1 dimensions. To
what extent does this simple dynamics of the domain wall
apply to other systems of first order phase transition? (ii) We
expect that it should be possible to generalize the results to
systems with circular or spherical bubbles (cf. holographic
simulations in Ref. [31]). (iii) We addressed pure gauge
theories. Incorporating flavored quark degrees of freedom,
which in the holographic picture means adding probe flavor
branes, is of utmost importance. Some interesting work in

this direction has been recently done in Refs. [23,32].
(iv) The transition from a deconfined to a confined phase is
achieved via hadronization, whose holographic description
remains elusive. It is not clear how this affects the dynamics
of the domain wall. (v) There might be certain possible
applications of our results to heavy ion collisions and quark
gluon plasma, potentially at nonzero density. It would also
be very interesting to investigate possible applications for
the early Universe.
Finally, as the final formulas [Eqs. (8) and (13)] have a

simple form and work quite well in strongly coupled
holographic settings, we hope that they may be used as
points of reference for domain wall velocities in various
contexts, akin to the holographic shear viscosity to entropy
ratio [33].
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