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Using two-dimensional simulations of sheared, brittle solids, we characterize the resulting fragmentation
and explore its underlying critical nature. Under quasistatic loading, a power-law distribution of fragment
masses emerges after fracture which grows with increasing strain. With increasing strain rate, the maximum
size of a grain decreases and a shallower distribution is produced. We propose a scaling theory for
distributions based on a fractal scaling of the largest mass with system size in the quasistatic limit or with a
correlation length that diverges as a power of rate in the finite-rate limit. Critical exponents are measured
using finite-size scaling techniques.
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Under large forces, solids fracture and fragment. This
process in which material breaks down into smaller
components or comminution is relevant to many problems
including the motion of tectonic plates [1,2], asteroid
collisions [3], ice floes [4,5], ballistic armor [6–9], and
high-pressure granular flow and compaction [10–12]. The
extent of fragmentation is often measured through the
distribution of the number of fragments N of mass M or
NðMÞ which is a common basis for continuum formula-
tions of breakage mechanics [13–16]. Theoretical models
developed to predict the evolution and final state of NðMÞ
[3,17–19] have widespread application, including even
seemingly disparate processes such as crumpling paper
[20]. This creates a need for data and a comprehensive
understanding of the dynamics of fragmentation to test and
calibrate models.
Intriguingly, it is often observed in fragmented granular

matter thatNðMÞ decays as a power of increasingM with an
exponent τ, NðMÞ ∼M−τ [21]. This has been seen in
experiments and simulations of impacted [22–25], crushed
[26–29], and sheared [1,30] solids. Fragmentation has there-
fore been postulated to be an instance of self-organized
criticality [13,22,31], a theory that some systems can
naturally evolve towards a critical state [32]. Scale-invariant
behavior has been found in many other dynamic systems
including sheared yield-stress materials [33–37] and depin-
ning elastic interfaces [38–42] that respond to a slow driving
rate with power-law distributed bursts of activity or ava-
lanches and are each understood to represent a dynamical
critical point [43–45]. In comparison, we have relatively
little understanding of connections between fragmentation
and criticality.
One puzzle is the value of τ which has been mea-

sured between 1.5 and 2.2 in different fragmented materials
[21]. Different values of τ have also been identified in
models of lattice stability [21,46,47] and simulations

[23–25,29,31,48,49]. However, if fragmentation is an
instance of critical behavior, one might expect all systems
described by the same critical point to share a universal τ. It
is unknown whether this could be explained by the
existence of several distinct universality classes or by some
alternate mechanism. Furthermore, it is unclear how a
critical distribution develops with strain or how distribu-
tions depend on system size or strain rate that can truncate
critical scaling.
In this Letter, we explore these questions using large,

particle-based simulations of sheared, brittle solids in two
dimensions. By tracking the evolution of the mass distri-
bution NðMÞ with strain at different rates, we provide new
insight into the dynamics of fragmentation. After fracture in
the quasistatic limit, NðMÞ has a power-law regime
extending to an upper cutoff Mcut that grows with strain.
At larger strain rates, the system enters a finite-rate regime
where a rate-dependent Mcut emerges that shrinks with
increasing rate. Unusual finite-rate effects are also identi-
fied in the evolution of NðMÞ which may explain some
variation in measured exponents. We present a scaling
theory for NðMÞ and test it using finite-size scaling
analysis. The size of the largest grain grows as a power
of system size in the quasistatic limit and as a power of
decreasing rate in the finite-rate limit.
To create a minimal model of fragmentation, we use

ideas from molecular dynamics and bonded particle models
[50] based on early work by Maloney and Robbins [51].
Solids are represented as disordered packings of repulsive
point particles connected by pairwise, attractive bonds that
break under large tensile forces. Bonds have an equilibrium
length equal to their initial length to create a stress-free
reference state. All quantities in this Letter are dedimen-
sionalized using the diameter and mass of a particle and the
energy scale of a bond. Appendix A includes details on the
model and deformation protocol.
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Under shear, solids fracture into separate fragments
which continue to break down into smaller pieces during
flow. This process results in polydisperse granular states
illustrated in Fig. 1. Individual grains or fragments are
identified as disconnected subgraphs in the network of
unbroken bonds. To calculate the distribution NðMÞ, grains
are logarithmically binned by mass M and each bin is
normalized by its width, labeled by its upper cutoff, and
averaged across multiple system realizations. Grains of
mass M < 3 were not tallied. The ability to resolve the
breakup of individual grains with strain during a simulation
helps illuminate the process of fragmentation although
advanced experimental techniques have also recently been
used to track fracture in brittle materials [11,52]. We first
consider results from large systems with side lengths of
L ¼ 2400 containing ∼8 × 106 particles sheared at a strain

rate of _ϵ ¼ 10−6. This rate exemplifies the quasistatic (QS)
limit as further reductions in rate do not affect results.
In Fig. 2(a), QS distributions NðMÞ are plotted for

various strains ϵ. Shortly after the system first fractures
at ϵ ¼ 2.2%, a power-law regime has already developed,
extending from a lower limit of Mmin ≈ 102 to an upper
cutoff of Mcut ≈ 104. Below Mmin, there is an excess of
small fragments as NðMÞ rises even faster with decreasing
M. The statistics of these small fragments are likely
influenced by the limiting size of a particle and are not
expected to display the same scaling. Above Mcut, NðMÞ
drops to zero before returning at an even larger mass of
Mmax ≈ 107, implying most of the system is still intact. The
early emergence of a power law reflects results from
impacted brittle solids which broke into power-law dis-
tributed fragments despite limited material flow [22–25].
As ϵ increases, the number of fragments withM < Mmax

increases. The power-law domain extends further as Mcut

grows before saturating around 3 × 106 at ϵ ¼ 100%

producing granular states similar to the system seen in
Fig. 1(a). The flow of mass to smaller scales is fueled by a
reduction in Mmax which continues until Mcut ≈Mmax. The
continued breakage is consistent with experiments that
found comminution persists to large strains in shear [1,30].
At even larger ϵ (not shown), the repository of material at
Mmax is depleted and Mcut decays. NðMÞ decreases for all
M > Mmin as small grains constitute a larger fraction of
mass. At ϵ ¼ 100% we estimate a power-law exponent τ ¼
1.70� 0.08, placing emphasis on larger M. In Fig. 2(b),
data is multiplied by this power law to highlight minimal
deviation at all ϵ. Over this range of ϵ, NðMÞ also grows as
a power of ϵ with an exponent of ϕ ≈ 0.55� 0.7 such that
curves collapse vertically in Fig. 2(b) after scaling by ϵ−ϕ.
The error bars for exponents reflect the estimated range of
values that reasonably describe the data.
A limited set of three-dimensional simulations were also

run, described in the Supplemental Material, which exhib-
ited qualitatively similar behavior with τ ¼ 1.7� 0.1 [53].
These values of τ fall within the range of experimentally
measured exponents in fragmented systems, τ ∼ 1.5–2.2

(a) (b) (c) (d)

FIG. 1. Rendered sections of systems at 200% strain for rates of (a) _ϵ ¼ 10−6, (b) 10−5, (c) 10−4, and (d) 10−3. Particles are colored by
the number of broken bonds interpolating from dark blue (no broken bonds) to pale yellow (all bonds broken).
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FIG. 2. (a) Quasistatic distributions NðMÞ at the indicated
strains ϵ. The dashed line represents a power law with exponent τ.
(b) NðMÞ scaled by the measured power law and ϵϕ. Values of
exponents are listed in Table I.
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[21]. The origin of this variation is unknown, but several
studies have identified potentially relevant variables. In
ballistic impacts, τ depended on the initial geometry [22].
In simulations, τ may depend on plasticity [25], the extent
of loading [29], and the rules of fracture [49]. Lattice
models suggested fragility may affect τ [21]. We focus on
the effect of strain rate.
At high rates _ϵ, the accelerated accumulation of stress

must be relaxed by nucleating more cracks [55], producing
a finer set of fragments [17,23,24,56–58]. Correspondingly,
in our simulations, there is a rapid drop in the size of the
largest fragments with increasing _ϵ reflected in Fig. 1. This
has a dramatic effect on the evolution of NðMÞ with strain
as seen for data at _ϵ ¼ 3 × 10−4 in Fig. 3(a). At small ϵ,
NðMÞ drops even faster with increasing N. While it would
be difficult to claim this data is a power law, a different
exponent −ðτ þ δÞ would be measured if a power law was
fit with δ possibly as large as 1.8.
As ϵ increases, Mmax decreases at a significantly faster

pace and the growth in Mcut truncates at a lower value
compared to QS data. Surprisingly, distributions become
less steep such that a fitted δ would decrease with
increasing ϵ and saturate around −0.3 at ϵ ¼ 100%.
While we cannot determine whether or not these curves
are real power laws due to small and ambiguous domains,
this highlights that fragmentation can have a dramatic
dependence on rate and could possibly explain some
variety in measured τ. Different exponents could be fit
at high rates depending on the accumulated strain. Similar
behaviors were seen in three-dimensional systems [53].
In Fig. 3(b), scaled distributions at ϵ ¼ 100% and

different _ϵ demonstrate a clear growth in Mcut with

decreasing _ϵ as distributions approach the QS limit. At
these large strains, the potential power-law domain is less
ambiguous and can rival those of many datasets conjec-
tured to be power-law distributed [59]. This limit therefore
has a stronger basis for a rate-dependent exponent with δ
growing from −0.6 to zero with decreasing _ϵ. Note that the
rate of change in δ slows with decreasing _ϵ, implying this
effect becomes less significant at smaller _ϵ.
To characterize the rate dependence ofMcut, we consider

finite-size effects at ϵ ¼ 100%. At a QS rate _ϵ ¼ 10−6,
smaller systems with side lengths L have a smallerMcut and
have fewer grains as expected. In particular, we find in
Fig. 4 that NðMÞ scales as a power of L with an exponent γ
and, focusing on largeM, estimate γ ¼ 1.65� 0.10, which
implies the number of grains does not grow extensively as
L2. There is also an additional spike near Mcut in small
systems that disappears with increasing L.
In contrast, at a high rate of _ϵ ¼ 10−3, NðMÞ is

independent of L. As _ϵ decreases, distributions for L ¼
75 first begin to deviate at _ϵ ¼ 3 × 10−4 as NðMÞ stops
evolving with further reductions in _ϵ and finite-size effects
emerge. Larger systems with L > 75 similarly cross over to
a QS limit at lower values of _ϵ. Examples of this behavior
are included in Appendix B. This observation reflects
results from the aforementioned depinning and yielding
transitions where QS driving allows a system to reach a
critical state. At finite rates, these systems move away from
the critical point and their dynamics are only correlated up
to a correlation length ξ which decreases as a power of
increasing rate [44,45,60–64].
In a similar vein, we postulate that there exists a

diverging correlation length ξ ∼ _ϵ−ν in fragmentation,
where ν is a new critical exponent. In infinitely large
systems, ξ governs the maximum size of a fragment such
that Mcut ∼ ξα, where α is another exponent. In finite
systems with L > ξ, L does not affect the maximum grain
size andMcut is equivalent to that of an infinite system. This
is the finite-rate (FR) limit. In contrast, if L < ξ, the
maximum grain size is constrained by L and not ξ such
that Mcut ∼ Lα and it is insensitive to further reductions in
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FIG. 3. (a) Scaled finite-rate distributions NðMÞ sheared to the
indicated strains ϵ at a rate of _ϵ ¼ 3 × 10−4. (b) Scaled NðMÞ at
ϵ ¼ 100% for the indicated _ϵ. Dashed lines represent exponents δ
equal to 1.8 and −0.3 in (a) and −0.6 in (b).
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FIG. 4. Quasistatic distributions NðMÞ scaled by Lγ with γ ¼
1.65 for the indicated system sizes L sheared at _ϵ ¼ 10−6 to
ϵ ¼ 100%. The largest mass at each L is enlarged.
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rate. This is the QS limit. To capture these ideas, we assume
NðMÞ only depends upon M=Mcut for M > Mmin for
sufficiently large ξ and L, and construct two scaling
ansatzes. In the QS limit,

NQSðM;LÞ ∼ Lγ−ατfðM=LαÞ; ð1Þ

where fðxÞ is a scaling function that goes to zero for x ≫ 1
and fðxÞ ∼ x−τ for x ≪ 1 to recover NQSðMÞ ∼ LγM−τ. In
the FR regime, a d-dimensional system can be divided up
into independent regions of size ξd, each of which contain a
distribution NξðMÞ of fragments. Assuming NξðMÞ∼
NQSðM;L ¼ ξÞ, one can combine the ðL=ξÞd contributions
to derive

NFRðM; _ϵÞ ∼ Ld _ϵνðd−γþατÞF ðM_ϵναÞ; ð2Þ

where F is a new function with the same limits as f.
In theory distributions in Figs. 3(b) and 4 can be

collapsed using these expressions but this is complicated
by deviations at small L and large _ϵ that violate assump-
tions as discussed in Appendix B. Alternatively, we
consider integrated values of NðMÞ which also highlight
the crossover between the QS and FR regimes. Using
Eq. (1), the nth moment of NQSðM;LÞ is

hMniQS ¼
Z

MnNQSðM;LÞdM ∼ Lγþαðnþ1−τÞ; ð3Þ

where integrals are dominated by the upper bound of Mcut
for n > τ − 1 ≈ 0.7. Note that NðMÞ is not normalized such
that the first moment hMi is simply the total mass of
fragments. Therefore, conservation of mass requires hMi ∼
Ld implying γ þ αð2 − τÞ ¼ d. A similar scaling relation
exists for avalanche distributions in the yielding transi-
tion [35,36,63]. Using this relation, Eq. (3) simplifies
to hMniQS ∼ Ldþαðn−1Þ. In the FR regime, hMniFR ∼
Ld _ϵναð1−nÞ is found by integrating Eq. (2).
As the first moment is trivial, we focus on the scaling of

the second moment. In the inset of Fig. 5, hM2iL−d does
not depend on L at large _ϵ but grows as a power of
decreasing _ϵ as predicted. However, this growth is immedi-
ately interrupted for the smallest system, L ¼ 75, as finite-
size effects emerge. As _ϵ continues to decrease, curves
saturate at lower _ϵ for larger L reflecting the divergence in
ξ. Assuming the only relevant length scales are ξ and L
such that hM2i depends on the ratio L=ξ, we construct the
finite-size scaling ansatz

hM2i ∼ Ldþαgð_ϵL1=νÞ; ð4Þ

where gðxÞ is a scaling function which must approach a
constant at small x and x−να at large x to reproduce QS and
FR scaling, respectively. Using this expression, data is
collapsed in Fig. 5 with values of α ¼ 1.7� 0.15 and

ν ¼ 0.70� 0.08. Although this collapse supports the pro-
posed scaling theory, it also did not account for deviations
identified at small L and high _ϵ that affect values of hM2i.
Future studies should focus on larger systems and slower
rates which are expected to reduce deviations to validate
estimates of exponents.
This Letter provides a detailed study of fragmentation

and new insight into the rate-dependent evolution of the
grain size distribution NðMÞ in shear. A power-law regime
in NðMÞ with exponent τ rapidly emerges after fracture in
the quasistatic limit. With increasing strain, unfragmented
material is consumed as mass flows to smaller length scales
driving an extension of the power-law domain. For allM in
this domain, NðMÞ grows as a power of strain.
With increasing strain rate, fragments become finer as

the power-law regime of NðMÞ is truncated at a smaller,
rate-dependent limit Mcut suggesting the system moves
away from the critical quasistatic limit. The distribution
also evolves differently as NðMÞ decays more rapidly with
M at small strains but becomes less steep with increasing
strain. At large strains, masses still appear to be power-law
distributed with a rate-dependent exponent. The physical
origin of this effect is unknown but it indicates that the
relative strength of fragments of different sizes may depend
on rate.
We propose the change inMcut with rate is captured by a

correlation length ξ that diverges as a power of decreasing
rate. As ξ grows to exceed the system size L, finite-size
effects emerge in NðMÞ as the system enters the quasistatic
limit. These ideas form the basis of a scaling theory for
NðMÞ which was verified using finite-size scaling analysis.
A series of critical exponents, summarized in Table I, were
measured, which determine the size of the largest grain, the
number of grains, and the divergence of the correlation
length.
While this Letter has begun to characterize the rich size

and rate dependence of fragmentation in shear, there are
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FIG. 5. The second moment hM2i as a function of rate _ϵ for the
indicated system sizes L after scaling data using Eq. (4) and
exponents in Table I. The dashed line represents a power law with
exponent −να. The inset includes uncollapsed data.
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many more avenues to consider. Further work is needed to
investigate the deviations to scaling seen at high rates and in
small systems and test scaling theories in three dimensions.
It is also important to systematically explore other variables
such as loading geometry, material properties, and inertia to
identify their impact on fragmentation.
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Appendix A: Simulation details.—To prepare systems,
we generated disordered two-dimensional square packings
of particles using a protocol from Refs. [63,65] to ensure
isotropic material properties. To prevent crystallization,
particles are bidisperse with diameters of either a, the unit
of length, or 3=5a and the ratio of the number of large to
small particles is set to ð1þ ffiffiffi

5
p Þ=4. All particles have mass

m. Two-dimensional simulations can be calibrated to
represent plane-strain deformation and are relevant to thin
sheets such as ice floes [4,5] and exploded egg shells [66].
Unlike typical bonded particle models, particles do not
have rotational degrees of freedom although rotation
emerges in clusters of bonded particles. This reduces
computational costs allowing larger systems to be simu-
lated for longer times.

Bonds are created using a Delaunay triangulation gen-
erated from particle positions. Bonds are two-body central
forces with magnitudes that depend on the distance
between the two particles at the start of the simulation
r0 and at the current timestep r:

FB ¼

8>>><
>>>:

6 × 22=3
ur2

0

a2r

��
r0
r

�
12
−
�
r0
r

�
6
�
; r ≤ r0

C1ðr − r0Þ þ C3ðr − r0Þ3; r0 < r < λr0
0; r ≥ λr0

:

ðA1Þ

In compression, this is a repulsive Lennard-Jones (LJ) force
with an equilibrium distance of r0 and a stiffness at small
displacements of 36 × 22=3u=a2, independent of r0, where
u is the unit of energy. In extension, the force is an attractive
polynomial with coefficients C1 and C3 chosen to mirror
the stiffness at r ¼ r0 and ensure a smooth transition to zero
at r ¼ λr0, where λ ¼ 1.05 represents the limiting stretch
where the bond permanently breaks.
Neighboring, nonbonded particles interact with a repul-

sive LJ force with an energy scale u. The force is truncated
at its equilibrium distance which is set equal to the sum of
particle radii. A Galilean-invariant damping force, similar
to that used in dissipative particle dynamics [67], is applied
to all pairs of interacting particles with a magnitude of

FD ¼ −Γ
�
1 −

r
rmax

�
2

ðr̂ · δv⃗Þ; ðA2Þ

where r̂ is the unit vector between the two particles, δv⃗ is
the difference in velocities, and rmax represents the maxi-
mum interaction distance, either λr0 for bonded particles or
the sum of radii for nonbonded particles. The damping
strength Γ is set to 50

ffiffiffiffiffiffiffi
mu

p
=a which keeps the system

athermal and is representative of the overdamped limit.
Over the range of strain rates simulated, the kinetic energy
is quickly dissipated, such that inertia is unable to sustain
crack propagation or granular rearrangement if mechanical
loading were to stop. All other quantities in this Letter are
dimensionless, scaled by the appropriate combination of a,
m, and u.
Systems undergo pure shear where one box dimension

contracts at a true strain rate labeled _ϵ while the other
expands to preserve area. To reach large strains, simulations
are fully periodic and use Kraynik-Reinelt boundaries [68].
Simulations were run in LAMMPS [69,70], which includes
a recently added bonded particle model package.
During loading, the stress rises linearly with strain ϵ

before cracks nucleate and grow at ϵ ≈ 2% causing the
stress to drop as seen in Fig. 6. The resulting system,
fractured and broken into pieces, then fluctuates around a
smaller stress as granular fragments flow in shear. This
average stress gradually decays on longer timescales as

TABLE I. Estimates and definitions of critical exponents.
Values are consistent with the scaling relation γ þ αð2 − τÞ ¼ d.

τ 1.70� 0.08 NðMÞ ∼M−τ

ϕ 0.55� 0.07 NðMÞ ∼ ϵϕ

γ 1.65� 0.1 NðMÞ ∼ Lγ

α 1.7� 0.15 Mcut ∼ Lα, ξα

ν 0.70� 0.08 ξ ∼ _ϵ−ν
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fragments continue to break into smaller pieces, as indi-
cated by a decay in the number of bonds. Notably, this
decay is punctuated by bursts of rapid bond breakage as
seen in the inset of Fig. 6. These events resemble crackling
noise produced by intermittent avalanches in the yielding
transition [44,64,71,72]. This is not unexpected as ava-
lanchelike bursts have been found in the propagation of
cracks in heterogeneous materials [73,74]. However, a
different deformation protocol is required to accurately
separate individual events and calculate a distribution of
magnitudes [35,36].

Appendix B: Additional finite-size effects and scaling.—
In this appendix, we both demonstrate how distributions at
ε ¼ 100% transition between the QS and FR limits and
how they can be roughly collapsed using scaling theories
proposed in the main text. As previously mentioned, the
shape of NðMÞ changes with decreasing rate up until it
reaches a limiting QS form at a value of _ϵ that decreases
with increasing system size L. This is seen when comparing
distributions at different _ϵ for L ¼ 150 in Fig. 7(a) to
previous data at L ¼ 2400 in Fig. 3(b). In contrast to L ¼
2400 where NðMÞ evolves with decreasing rate down to
_ϵ ¼ 3 × 10−6, at L ¼ 150 NðMÞ converges by _ϵ ¼ 10−4.
This behavior is also seen in Fig. 7(b) where NðMÞ at _ϵ ¼
10−4 has a nontrivial dependence on L for L < 300 but
simply scales as L2 for L ≥ 300where the number of grains
grows linearly with the area of the system. As in Fig. 4, we
see a spike emerge in the number of grains near Mcut in
small systems as they enter the QS limit. The reduction in
the steepness ofNðMÞ at large _ϵ is also preserved at small L
when entering the QS limit, although this is clouded by the
changing shape of NðMÞ near Mcut and is quite subtle in
Fig. 4. Similar behavior is seen when comparing distribu-
tions at other cross sections of rate or system size.
As alluded to in the main text, the scaling theories in

Eqs. (1) and (2) can be used to collapse distributions,
however, deviations at small L and large _ϵ as well as limited
statistics near Mcut make it difficult to assess the quality of

the collapses and bound exponents. Nevertheless, QS
distributions from Fig. 4 for different L are reasonably
collapsed in Fig. 8(a) using exponents in Table I and the
protocol in Eq. (1). Importantly, distributions are consis-
tently cut off around a constant value ofM=Lα for all L. As
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noted before, the spike in NðMÞ near Mcut for L less than
∼300 implies these systems are too small to satisfy the
assumptions of Eq. (1).
Similarly, distributions in the FR limit for L ¼ 2400 for

different _ϵ from Fig. 3(b) are roughly collapsed in Fig. 8(b)
using the procedure in Eq. (2). The evolution in the
steepness of the distribution, which breaks assumptions
used to derive Eq. (2) but becomes less prominent at
smaller _ϵ, obscures the collapse. Notably, however, dis-
tributions again go to zero near an equivalent value ofM_ϵνα

for all _ϵ < 3 × 10−6 where data at _ϵ ¼ 3 × 10−6 should not
collapse as it is already transitioning to QS behavior
(Fig. 5). Despite these complications, this process is still
a useful test of exponents in Table I and is consistent with
the predicted scaling of Mcut and NðMÞ.
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