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Two-channel Kondo lattice serves as a model for a growing family of heavy-fermion compounds. We
employ a dynamical large-N technique and go beyond the independent bath approximation to study this
model both numerically and analytically using renormalization group ideas. We show that the Kondo effect
induces dynamic magnetic correlations that lead to an emergent spinon dispersion. Furthermore, we
develop a quantitative framework that interpolates between infinite dimension where the channel-
symmetry broken results of mean-field theory are confirmed, and one-dimension where the channel
symmetry is restored and a critical fractionalized mode is found.
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The screening of a magnetic impurity by the conduction
electrons in a metal is governed by the Kondo effect. The
multichannel version is when several channels compete for
a single impurity, as a result of which the spin is frustrated
and a new critical ground state formed with a fractional
residual impurity entropy. In the two-channel case, this
entropy 1

2
log 2 corresponds to a Majorana fermion. If the

channel symmetry is broken, the weaker channels decouple
and the stronger-coupled channels win to screen the
impurity at low temperature [1–4].
While the case of a single impurity is well understood,

much less is known about Kondo lattices where a lattice of
spins is screened by conduction electrons [5–7], especially
if multiple conduction channels are involved [8]. The most
established fact is the prediction of a large Fermi surface
(FS) in the Kondo-dominated regime of the single-channel
Kondo lattice [9]. In the multichannel case, the continuous
channel symmetry naturally leads to new patterns of
entanglement which are potentially responsible for the
non-Fermi liquid physics [10,11], symmetry breaking,
and possibly fractionalized order parameter [12]. This
partly arises from the fact that the residual entropy seen
in the impurity has to eventually disappear at zero temper-
ature in the case of a lattice.
Beside fundamental interest, a pressing reason for study-

ing this physics is that the multichannel Kondo lattice
(MCKL), and in particular 2CKL, seems to be an appro-
priate model for several heavy-fermion compounds, e.g.,
the family of Pr Tr2Zn20 (Tr ¼ Ir;Rh) [13,14] as well as
recent proposals that MCKLs may support nontrivial topo-
logy [15,16] and non-Abelian Kondo anyons [17,18].
The MCKL model is described by the Hamiltonian

H ¼ Hc þ JK
X
j

S⃗j · c
†
jaσ⃗cja; ð1Þ

where Hc ¼ −tc
P

hijiðc†iαacjαa þ H:c:Þ is the Hamiltonian
of the conduction electrons and Einstein summation over

spin α; β ¼ 1;…; N and channel a; b ¼ 1;…; K indices is
assumed. This model has SUðNÞ spin and SUðKÞ channel
symmetries and we are interested in analyzing the effect

of a channel symmetry breaking H → H þP
j ΔJ⃗j · O⃗j,

where O⃗j ≡ ðS⃗j · c†jaσ⃗cjbÞτ⃗ab and τ⃗’s act as Pauli matrices
in the channel space [19]. At first look, at least certain
deformation of the MCKL can be thought of as a channel
magnet. (A naïve strong coupling limit is not a spin singlet,
but the Nozières doublet. See Supplemental Material [20]
for a deformation that changes this.) In the JK → ∞ limit
[20], the spin is quenched due to formation of Kondo
singlet with either (for K ¼ 2) of the channels, leading to a

doublet over which O⃗ acts like τ⃗ [20,21]. Interaction among
adjacent doublets leads to a “channel magnet” Heff ∝
ðt2=JKÞ

P
hiji O⃗i · O⃗j. While channel Weiss-field favors a

channel antiferromagnetic (channel AFM) superexchange

FIG. 1. (a) The 1D version of the two-channel Kondo lattice
model studied here. (b) The strong coupling leads to a channel
magnet; two different patterns of channel symmetry breaking,
channel FM (top) and channel AFM (bottom). Bold lines
represent spin singlets. (c) The entropy S of two-channel Kondo
impurity vs channel asymmetry and temperature. At the sym-
metric point, S reduces to a fraction of the high-T value.
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interaction, the mean-field theory predicts a variety of
channel ferromagnetic (channel FM) and channel AFM
solutions [Fig. 1(b)] depending on the conduction filling.
On the other hand, some differences to a channel magnet

are expected since the winning channel has a larger FS
[12,22] and the order parameter O⃗ is strongly dissipated by
coupling to fermionic degrees of freedom. Although a
channel-symmetry broken ground state is predicted by both
single-site dynamical mean-field theory (DMFT) [19,23]
and static mean-field theory [22,24,25], it has not been
observed in recent cluster DMFT studies [26]. Furthermore,
the effective theory of fluctuations in the large-N limit [22]
predicts a disordered phase below the lower critical
dimension but the nature of this quantum paramagnet is
unclear. In 1D, Andrei and Orignac have used non-Abelian
bosonization to show [27] that the ground state is gapless
and fractionalized (dispersing Majoranas for K ¼ 2), a
prediction that contradicts the analysis by Emery and
Kivelson [28], and has not been confirmed by the density
matrix renormalization group calculations [21].
Resolving these issues requires a technique that is

applicable to arbitrary dimensions and goes beyond static
mean field and DMFT by capturing both quantum and
spatial fluctuations. Here, we show that the dynamical
large-N approach, recently applied successfully to study
Kondo lattices [29–36], is precisely such a technique.
We assume the spins transform as a spin-S representation

of SUðNÞ. In the impurity case [37], the spin is fully
screened for K ¼ 2S whereas it is overscreened and
underscreened for K > 2S and K < 2S, respectively
[38]. The focus of this Letter is on the Kondo-dominated
regime of the double-screened case K=2S ¼ 2 which is
schematically shown in Fig. 1(a). We use Schwinger
bosons Sjαβ ¼ b†jαbjβ to form a symmetric representation

of spins with the size 2S ¼ b†jαbjα. We then rescale JK →
JK=N and treat the model (1) in the large-N limit, by
sending N;K; S → ∞, but keeping s ¼ S=N and γ ¼
K=N ¼ 4s constant. The constraint is imposed on average
via a uniform Lagrange multiplier μb.
In the present large-N limit, the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction is Oð1=NÞ [inset of
Fig. 2(a)] and we need to include an explicit Heisenberg
interaction H → H þ JH

P
hiji S⃗i · S⃗j between nearest

neighbors hiji to couple the impurities. Nevertheless, we
will show that an infinitesimal JH is sufficient to produce
significant magnetic correlations due to a novel variant of
RKKY interaction. For simplicity we limit ourselves to
ferromagnetic correlations JH < 0.
For a V site lattice, the Lagrangian becomes [30,39]

L ¼
X
k

c̄kaαð∂τ þ ϵkÞckaα þ
X
k

b̄kαð∂τ þ εkÞbkα

þ
X
j

χ̄jaχja
JK

þ
X
j

1ffiffiffiffi
N

p ðχ̄jabjαc̄jaα þ H:c:Þ þ 2VμbS:

ð2Þ

Here, b’s are bosonic spinons and χ’s are Grassmannian
holons that mediate the local Kondo interaction. In
momentum space, the electrons and bosons have disper-
sions ϵk ¼ −2tc cos k − μc and εk ¼ −2tb cos k − μb,
respectively. tb is the (assumed to be homogeneous) nearest
neighbor hopping of spinons due to large-N decoupling of
the JH term [30]. Here, we focus on a half-filled conduction
band μc ¼ 0, but similar results are obtained at other
commensurate fillings [20]. In the large-N limit the
dynamics is dominated by the noncrossing Feynman
diagrams, resulting in boson and holon self-energies
[r⃗≡ ðj; τÞ]

Σbðr⃗Þ ¼ −γGcðr⃗ÞGχðr⃗Þ; Σχðr⃗Þ ¼ Gcð−r⃗ÞGbðr⃗Þ; ð3Þ

whereas Σc is Oð1=NÞ and thus the electrons propagator
G−1

c ðk; zÞ ¼ z − ϵk remains bare, with z complex frequ-
ency. Equations (3) together with the Dyson equations
G−1

b ðk; zÞ ¼ z − εk − Σbðk; zÞ and G−1
χ;aðk; zÞ ¼ −J−1K;a−

Σχðk; zÞ form a set of coupled integral equations that are
solved iteratively and self-consistently, while μb is adjusted
to satisfy the constraint. Thermodynamic variables are then
computed from Green’s functions [29,30].
First, we study the case in which JH is absent, or

εk ¼ −μb. In this limit, the self-energies remain local
Σb;χðn; τÞ → δn0Σb;χðτÞ and the problem reduces to the
impurity problem [39]. It has never been studied whether
the large-N overscreened impurities are susceptible to
symmetry breaking [2]. To do so, we assume that half
of K channels are coupled to the impurity with JK þ ΔJ
and the other half with JK − ΔJ. This corresponds to a
uniform symmetry breaking deformation ΔL ¼ ðΔJ=J2KÞ×P

j½χ̄j1χj1 − χ̄j2χj2� of the Lagrangian. Figure 1(c) shows
the entropy of the 2CK impurity model as a function of

FIG. 2. 1D 2CKL model. The temperature evolution of (a) the
effective energy εeff for spinons and (b) the inverse effective
Kondo coupling J−1K;eff for holons. At high-T, JK;eff ¼ JK with no
k dependence. Initially, Kondo effect develops locally and
J−1K;eff → 0. Then dispersion emerges in both Gχ and Gb, with
J−1K;eff vanishing only at k ∼�kF and εeff only at k ∼ 0. Inset of
(a): despite an Oð1=NÞ RKKY interaction (black), an initial
spinon dispersion (blue) can lead to an O(1) amplification to in
the present overscreened case. Inset of (b): Entropy S vs T for 0D,
1D (tb ¼ 0.2tc), and 1D0 (tb ¼ 0.0002tc).
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channel asymmetry, verifying that the impurity is indeed
critical with respect to channel symmetry breaking. In
symmetric 2CK, the ground state entropy at large-N is
fractional with a universal dependence on ðγ; sÞ [20,39].
Next, we focus on finite tb case for two settings of 1D

and ∞D, which correspond to a Bethe lattice with co-
ordination numbers z ¼ 2 and z ¼ ∞. In 1D, Gðk; zÞ and
Σðk; zÞ depend on k and z, but in∞D, self-energies have no
spatial dependence and the Green’s functions of spinons
and electrons obey G−1

b;c ¼ zþ μb;c − Σb;cðzÞ − t2b;cGb;c.
Importantly, the criticality of overscreened impurity

solution ensures that an infinitesimal spinon hopping seed
tb ∼ 0 can get an O(1) amplification [inset of Fig. 2(a)] and
dispersions for spinons and holons are dynamically gene-
rated. Restricting ourselves to translationally invariant
solutions with lattice periodicity a, this effect can be
succinctly represented by the zero-frequency spinon and
holon effective dispersion J−1K;effðkÞ≡ −Re½G−1

χ ðk;ω ¼ 0Þ�
and εeffðkÞ≡ −Re½G−1

b ðk;ω ¼ 0Þ�, shown in Figs. 2(a) and
2(b) for various temperatures. This emergent spinon
dispersion is independent of the choice of the seed and
agrees qualitatively with the finite tb results [20]. The
consumption of the residual entropy in the lattice by the
emerging dispersion is visible in the inset of Fig. 2(b). We
stress that in 1D, this apparent transition most likely
becomes a crossover when N is finite [40]. In the case
of ∞D, the system is prone to spin or channel magneti-
zation, as discussed later. Such symmetry breakings would
consume the residual entropy [20].
Figures 3(a) and 3(b) show the finite frequency spectral

function of spinons and holons, respectively. Both are
dominated by a sharp mode with emergent Lorentz invari-
ance. The spinons are gapless and linearly dispersing and
the holons form a FS. The temperature collapse of Fig. 3(c)
confirms that the spectra are critical with the local spectra
obeying a T1−2Δb;χG00

b;χðx ¼ 0;ωÞ ¼ fb;χðω=TÞ behavior.
Figure 3(d) shows similar collapse for the case of infin-
ite-coordination Bethe lattice (∞D). A marked difference
between the two cases is that Δχ > 1=2 for 1D, which leads
to −G00

χ minima at ω ∼ 0, whereas Δχ < 1=2 in ∞D,
manifested as a peak at ω ∼ 0.
What is the effect of channel symmetry breaking on the

volume of FS? According to Luttinger’s theorem, the
FS volume is related to electron phase shift vFSa ¼
V−1P

k δaðkÞ for a d dimensional lattice. From the K ¼
4S case of the Ward identity [41], the electron phase shift is
related to that of holons Nδc;aðkÞ ¼ δχ;aðkÞ, which itself is
defined as

δχ;aðkÞ ¼ −Imflog½−G−1
χ;aðk; 0þ iηÞ�g: ð4Þ

The locus of points at which J−1K;effðkÞ changes sign defines
a holon FS which generalizes to any dimension. In 1D,
holons are occupied for jkj < π=2. So, we find that
vFSχ;a ¼ 2πS=K ¼ π=2 and the total change in electron FS

is NΔvFSc;a ¼ π=2, corresponding to a large FS in the critical
phase. We use Eq. (4) to study the effect of a uniform
symmetry breaking fieldΔL. Figure 4(a) shows how FSs of
slightly favored and disfavored channels evolve as a
function of T in the two cases. In 1D, the FS asymmetry
disappears, restoring a channel symmetric criticality at low
T, consistent with the Mermin-Wagner theorem. On the
other hand, in ∞D the asymmetry grows and one channel
totally decouples from the spins, with gapped spinons and
also gapped holons for both channels. The exponents are
related to Δχ ; varying ΔJ in Eq. (4) we find

∂vFSχ;a
∂ΔJ

¼ −1
V

X
k

G00
χðk; 0þ iηÞ ¼ −G00

χðx ¼ 0; 0þ iηÞ: ð5Þ

Assuming jGχðr⃗Þj ∼ jr⃗j−2Δχ , the holon FS is unstable
against symmetry breaking when G00

χðkF; 0þ iηÞ ∼
T2Δχ−d−1 diverges. This 2Δχ < dþ 1 regime coincides
with when the symmetry breaking term ΔJ is relevant,
in the renormalization group (RG) sense. On the other hand
instability of the entire holon FS requires the divergence of
G00

χðx ¼ 0; 0þ iηÞ ∼ T2Δχ−1, i.e., 2Δχ < 1 which is a more
stringent condition and agrees with Fig. 4(a), confirming
Δχ ¼ 1=2 as the marginal dimension.
Figure 4(a) shows that the symmetry breaking ΔL is

relevant in ∞D, but is irrelevant in 1D. To establish this
from the microscopic model, one has to access the infrared
(ir) fixed point. From the numerics we see that the system
flows to a critical ir fixed point, in which spinons and

FIG. 3. The spectral function of (a) spinons and (b) holons in a
1D two-channel Kondo lattice at T=JK ¼ 0.0072, showing
emergent linearly dispersing spinons at k ¼ 0 (bare dispersion
is quadratic) and holons with Fermi point at �kF. Scaling
collapse of spinon and holon Green’s functions in the 2CK
critical regime in (c) 1D lattice (z ¼ 2) 0.0072 ≤ T=JK ≤ 0.03
and (d) ∞D Bethe lattice (z ¼ ∞) 0.006 ≤ T=JK ≤ 0.03. For
both cases, JK=tc ¼ 6, tb=tc ¼ 0.2, and s ¼ 0.15.
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holons are critical in addition to electrons. For an impurity
Gb ∼ jτj−2Δb and GχðτÞ ∼ jτj−2Δχ are reasonable at T ¼ 0.
The exponents are known [20,39]:

0;∞D∶ Δχ ¼
γ

2ð1þ γÞ ; Δb ¼
1

2ð1þ γÞ ; ð6Þ

and coincide with those of the ∞D in the small tb regime
we are interested here [20]. In the presence of a dimension-
less λ0 ¼ ΔJ=ρJ2K , the RG analysis dλ=dl ¼ ð1 − 2ΔχÞλ
predicts a dynamical scale w ∼ TKλ

1þγ
0 [cf. Fig. 1(c)].

The 1D case is more subtle; as T → 0, we see from Fig. 2
that J−1K;effð�kFÞ → 0 and εeffð0Þ → 0 at the ir fixed point
[42]. This means that the Kondo coupling flows to strong
coupling at jkj < kF, to weak coupling at jkj > kF, and gets
critical at k ¼ �kF, while the spinons are gapless at k ¼ 0.
At these momenta, the Dyson equation has the scale-
invariant form GbΔΣbjk∼0 ¼ GχΔΣχ jk∼�kF ¼ −1.
We can obtain a low-energy description by expanding

fields near zero energy, e.g., ψðxÞ ∼ eikFxψR þ e−ikFxψL
for electrons and holons. In 1þ 1 dimensions, the con-
formal invariance of the fixed point dictates the following
form for the T ¼ 0 Green’s functions Gðx; τÞ ¼ Gðz; z̄Þ:

Gb ¼ −ρ̄
�
a2

z̄z

�
Δb

; GχR=L ¼ −1
2π

�
a
z̄

�
Δχ�1=2

�
a
z

�
Δχ∓1=2

;

ð7Þ

where z ¼ vτ þ ix and ρ̄ ¼ 2s=a. The GcR=L is obtained
from GχR=L by Δχ → 1=2. These Green’s functions can be
conformally mapped to finite T via z → ðβ=πÞ sinðπz=βÞ
replacement. Furthermore, in terms of q ¼ kþ iω=v, they
have the Fourier transforms:

Gb ¼ −2πa2ρ̄v−1b ða2q̄qÞΔb−1ζ0ðΔbÞ;
GχR=L ¼∓ a2v−1χ ðaq̄ÞΔχ−1∓1=2ðaqÞΔχ−1�1=2ζ1ðΔχÞ; ð8Þ

where ζnðΔÞ≡ 21−2ΔΓð1 − Δþ n=2Þ=Γðn=2þ ΔÞ. From
matching the powers of frequency in Eqs. (3), (7), and (8),

we conclude that Δb þ Δχ ¼ 3
2
in order to satisfy the self-

consistency. Moreover, from the matching of the ampli-
tudes of the Green’s functions we find [20]

1D∶ Δχ ¼
1þ 6γ

2ð1þ 2γÞ ; Δb ¼
2

2ð1þ 2γÞ : ð9Þ

Note that Δχ > 1=2, ensuring that channel symmetry
breaking perturbations are irrelevant in 1D. These are in
excellent agreement with the exponents extracted from
ω=T scaling [Fig. 4(b)] and we have established a semi-
analytical framework to interpolate between 1D and ∞D.
The emergent dispersion in Fig. 2, the scaling dimen-

sions in Eq. (9), and their relation to symmetry breaking in
Fig. 4 are the central results of this Letter. In the following
we discuss some of the implications of these results for
physical observables that are independent of our fraction-
alized description, leaving the details to [20].
The fractionalization Sαβ ∼ b†αbβ or b†αcaα ∼ χa contrac-

tion are related to order parameter fractionalization [12,43].
In the long time and distance limit, correlation functions of
b†αcaα and that of χa are given by Σχ and Gχ , respectively
and thus, have exponents that add up to zero. On the other
hand, correlators of gauge-invariant operators Xab ≡ χ̄aχb
and Oab ≡ b†αbβc

†
bβcaα are exactly equal since both can

be constructed by taking derivatives of free energy
with respect to ΔJab, either before or after Hubbard-
Stratonovitch transformation. A diagrammatic proof of
this equivalence is provided in [20]. Scaling analysis gives
χchðx ¼ 0Þ ∼ T4Δχ−1 and χ1Dch ðq ¼ 0Þ ∼ T4Δχ−2 up to a
constant shift coming from the regular part of free energy.
Another nontrivial feature of the 2CK impurity fixed

point is its magnetic instability [2] whose large-N
incarnation is Δb < 1=2 for the impurity (or ∞D) in
Eq. (6). From Eq. (9), we see that this also holds for 1D
2CKL for γ > 1=2. This is reflected in the divergence of the
uniform χmðq ¼ 0Þ static magnetic susceptibilities as a
function of T. Using scaling analysis χ1Dm ðq ¼ 0Þ ∼ T4Δb−2

and χmðx ¼ 0Þ ∼ T4Δb−1 up to a constant shift, in good
agreement with numerics [20]. Note that this critical spin
behavior is different from the gapped spin sector observed
in [21,28], but is qualitatively consistent with [27].
Lastly, the fact that the fixed point discussed above is ir

stable follows from the fact that the interaction is exactly
marginal due to Δb þ Δχ ¼ 3=2 and that vertex corrections
remain Oð1=NÞ. The 1þ 1D correlators (7) can be
obtained from three sets of decoupled Luttinger liquids
for each of the c, b, χ fields with fine-tuned Luttinger
parameters that give the correct exponents. Such a spinon-
holon theory will have a Virasoro central charge
c0=N ¼ 1þ γ. On the other hand the coset theory of
[20,27,44] predicts cAO=N ¼ γ=ð1þ γÞ. We have used
T → 0 heat capacity and the excitation velocities v to
compute the central charge according to C=T ¼ ðπk2B=6vÞc

FIG. 4. (a) The evolution of FS in the presence of small channel
symmetry breaking in 1D and ∞D with temperature. (b) The
scaling exponents Δb=χ in 1D from the numerics. The lines show
the analytical values given by Eqs. (9).
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as a function of γ and found c ¼ c0 [20]. Note that there is
no contradiction with the c theorem since the uv theory is
not Lorentz invariant due to ferromagnetism. The discrep-
ancy with cAO is likely rooted in inability of Schwinger
bosons to capture gapless spin liquids [45].
In summary, we have shown that the dynamical large-N

approach can capture symmetry breaking in multichannel
Kondo impurities and lattices in the presence of both
emergent and induced ferromagnetic correlations within
an RG framework with explicit examples on 0D, 1D, and
∞D. The scaling analysis enables an analytical solution to
the critical exponents and susceptibilities which are in good
quantitative agreement with numerics, and is applicable to
higher dimensional CFTs. A determination of the upper and
lower critical dimensions and the effect of antiferromag-
netic correlations are left to a future work [46].
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