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We perform large-scale, numerically exact calculations on the two-dimensional interacting Fermi gas
with a contact attraction. Reaching much larger lattice sizes and lower temperatures than previously
possible, we determine systematically the finite-temperature phase diagram of the Berezinskii-Kosterlitz-
Thouless (BKT) transitions for interaction strengths ranging from BCS to crossover to BEC regimes. The
evolutions of the pairing wave functions and the fermion and Cooper pair momentum distributions with
temperature are accurately characterized. In the crossover regime, we find that the contact has a
nonmonotonic temperature dependence, first increasing as temperature is lowered, and then showing a
slight decline below the BKT transition temperature to approach the ground-state value from above.
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Two-dimensional (2D) correlated fermion systems have
been of central interest in condensed matter physics and
other areas. They vary from lattice models [1,2] to ultracold
quantum gas [3] and real materials [4]. The interplay
between the reduced dimensionality and many-body cor-
relation effects in such systems can induce fascinating
and unique quantum phenomena, such as Berezinskii-
Kosterlitz-Thouless (BKT) phase transitions [5–8] and
high-temperature superconductivity [9]. Among them,
the 2D Fermi gas with zero-range attractive interaction
presents tremendous opportunities as it can be experi-
mentally realized using ultracold atoms [3] in a highly
controlled way. The system has already contributed
greatly to our understanding of BCS-BEC crossover
physics [10–13]. With intense ongoing effort and rapid
experimental advances, it is poised to play an even greater
role in the quest to understand the physics of 2D
correlated fermion systems.
In experiments, the interaction strength of the 2D Fermi

gas can be tuned by the scattering length via Feshbach
resonance, and a wide range of fermion densities and
temperatures can be accessed with great control and
precision. Such a dilute Fermi gas system was first realized
with a harmonic trap [14–32] and recently in a box
potential [33,34]. Early experiments studied the density
distribution in a trap [16], the 2D–3D crossover [17,18],
polarons [19,20], viscosity [21], the contact parameter
[22], pressure [23], followed by the equation of state
[27,29]. Superfluidity at low temperatures and the corre-
sponding BKT phase transitions were observed through
measurements of the pair condensate [24], first-order
correlation function g1ðrÞ [25] and the critical velocity

[34], and the BKT transition temperature in the crossover
regime was measured in Ref. [24]. Many more experiments
can be expected, with increasing capability, precision, and
control. This has stimulated much theoretical and computa-
tional activity and opened an avenue for rapid progress
through comparison and benchmark.
Theoretically, the 2D Fermi gas is usually described by a

model including a simple dispersion (e.g., quadratic) and
contact attraction [35]. A variety of approximate theories
have been applied, including mean-field analysis [11,36],
virial expansion [37,38], and the Luttinger-Ward approach
[39–42]. These studies have concentrated on the equation
of state, pair correlations, BKT transitions, and the possible
pseudogap phenomena. Computationally, ground-state
properties have been characterized reasonably well, with
fixed-node diffusion Monte Carlo simulations [43,44] and
numerically exact auxiliary-field quantum Monte Carlo
(AFQMC) method [45,46]. At finite temperatures, a
quantum Monte Carlo (QMC) study employing state-of-
the-art lattice techniques provided numerically exact results
on the pressure, compressibility, and the contact [47];
however, these simulations were still mostly limited to
finite lattices of ∼400 sites and in the normal phase at
higher temperatures.
In this Letter, we report an ab initio, numerically exact

study of the finite-temperature properties of the BCS-BEC
crossover in the 2D Fermi gas. Implementing recent
progress in AFQMC [48], our calculations reach lattice
sizes (∼5000 sites) and temperatures (TF ∼ 0.0125TF) far
beyond what has been possible with existing methods. This
allows us to approach the continuum and thermodynamic
limits, and compute quantities previously inaccessible from
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simulations or determine properties with much higher
precision. We obtain the phase diagram of the BKT tran-
sition, and characterize the evolution of the pairing wave
functions and the fermion and pair momentum distributions.
An accurate measure of the contact is provided.
We model the uniform 2D Fermi gas with contact

attraction by the following lattice Hamiltonian,

Ĥ ¼
X

kσ

εkc
þ
kσckσ þ U

X

i

n̂i↑n̂i↓ − μ
X

i;σ

n̂iσ; ð1Þ

where σ (¼↑ or ↓) denotes spin, and n̂iσ ¼ cþiσciσ is the
density operator. We have tested both the Hubbard εk ¼
4 − 2ðcos kx þ cos kyÞ and the quadratic dispersions εk ¼
k2x þ k2y (corresponding to fermion mass m ¼ 1=2 compar-
ing to εk ¼ ℏ2k2=2m), where the momentum kx (and ky)
are defined in units of 2π=L with the system size Ns ¼ L2.
These dispersions, which both have finite effective ranges
[49] that vanish as L → ∞, lead to consistent results in the
large L limit. The Hubbard dispersion tends to have larger
finite-size effects, which are more prominent in the contact.
We use it for cross-checks, but all our final results are
obtained with the quadratic dispersion. In practical simu-
lations, the chemical potential μ is tuned to reach a fixed
number of fermions Ne, resulting in a fermion density
n ¼ Ne=Ns. The on-site interaction strength U can be
determined from logðkFaÞ [45,48,50] (with the Fermi
vector kF ¼ ffiffiffiffiffiffiffiffi

2πn
p

and the 2D scattering length a). We
measure temperatures in units of TF ≡ EF=kB (setting
kB ¼ 1) with the Fermi energy EF ¼ k2F ¼ 2πn. To reach
the continuum limit reliably, especially given the delicate
nature of the BKT transition, we have simulated lattice
sizes up to 75 × 75. To span the temperature range and
make connection with the ground state, we access temper-
atures as low as T=TF ¼ 0.0125.
Perhaps the most intriguing property of 2D Fermi gas is

the BKT phase transition [5,6]. We compute the transition
temperatures TBKT=TF numerically from the condensate
fraction in finite systems. The condensate fraction nc is
obtained as the leading eigenvalue of the zero-momentum
spin-singlet pairing matrix [45,48]

Mkk0 ¼ hΔþ
kΔk0 i − δkk0 hcþk↑ck↑ihcþ−k↓c−k↓i; ð2Þ

divided by Ne=2, with Δþ
k ¼ cþk↑c

þ
−k↓ as the pairing

operator. The corresponding eigenvector gives the pairing
wave function in reciprocal space ϕ↑↓ðkÞ. In a finite-size
system the first-order derivative dnc=dðT=TFÞ shows a
sharp peak [48], whose location identifies the BKT
transition. We fit ncðTÞ in each system using a fourth-
order polynomial around the transition point, and then
compute the peak location of its first-order derivative. We
then perform a finite-size extrapolation to obtain TBKT in
the thermodynamic limit [51]. (We have also tested using

the first-order correlation function and studying its
decay exponent, and find the finite-size effects are much
larger [52–56].) Systematic errors from finite-size effects are
removed or estimated from the extrapolation process [51].
Other systematic errors (Trotter errors, truncation errors)
are controlled and smaller than our statistical uncertainties.
The latter are estimated from the Monte Carlo process as
one standard deviation errors.
Our main results are summarized in Fig. 1, which

presents the phase diagram of the 2D Fermi gas. The BKT
transition temperatures TBKT=TF are obtained from an
extensive set of individual AFQMC calculations, yielding
numerically exact solutions for the Hamiltonian ĤðNs; NeÞ
on finite lattices. As mentioned, the most accurate finite-
temperature results from previous QMC calculations [47]
were limited to high temperatures, mostly in the normal
phase. Our AFQMC calculations, employing several meth-
odological advances including a low-rank factorization
technique, are able to study both normal and superfluid
phases by reaching much lower temperatures, and compute
properties accurately at the continuum limit by reaching
much larger lattice sizes (Ns ∼ 5000 vs Ns < 400). This
allows reliable finite-size extrapolation to Ns → ∞ [57–
59]. Results of TBKT=TF are shown for a gas of L ¼ 45,
Ne ¼ 58 for ten interaction strengths spanning the
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FIG. 1. BKT transition temperatures and phase diagram of the
2D interacting Fermi gas. Empty red circles show our exact
results for a finite system of L ¼ 45, Ne ¼ 58 with quadratic
dispersion. Filled red circles show finite-size scaling results to the
continuum and thermodynamic limits (L ¼ ∞, Ne ¼ ∞) for a
subset of the interaction strengths. The solid red line connecting
these are the results of interpolation, with the shaded band
indicating statistical error bars based on both sets of results.
For comparison, results are also shown from BCS mean-field
theory and its improvement on the BCS side (Petrov et al. [36]),
the weakly interacting Bose gas on the BEC side (Petrov et al.
[36]), one-loop Gaussian fluctuation theory (Bighin et al. [36]),
Luttinger-Ward theory (Bauer et al. [40]), Gaussian pair fluc-
tuation theory (Mulkerin et al. [60]), and experimental measure-
ments (Ries et al. [24] and Sobirey et al. [34]).
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BCS-BEC crossover. Then for selected interaction strengths,
we perform systematic finite-size scaling with a range of Ne
values (up to 122) [51], each at the continuum limit, to
estimate TBKT=TF at the thermodynamic limit Ne ¼ ∞.
The highest BKT transition temperature occurs in

the crossover regime, for example at logðkFaÞ¼þ0.0,
TBKT=TF ¼ 0.129ð9Þ (statistically indistinguishable from
the predicted upper bound of 0.125 [61]). This is likely the
balance between competing trends. In the weak coupling
BCS regime, TBKT=TF decreases with interaction. On the
other hand, as interaction is increased, it is observed that
the Cooper pairs become more massive [22], suppressing
the tendency for phase coherence. The TBKT=TF values
measured from experiment [24] are also shown in Fig. 1.
Experimental error bars are still large but our results are
consistent with the measured results in the BEC and
crossover regimes. In a more recent experiment [34] the
BKT transition temperature is measured in the deep BEC
regime [logðkFaÞ ¼ −2.9] to be 0.094(24). Although this is
well outside the interaction strength we studied, the result
seems compatible with the trend in our curve at the smallest
logðkFaÞ value. A clear discrepancy is seen in the BCS
regime between our results and experiment. This could be
due to the experimental analysis procedure [62]. Further
investigations are needed which will undoubtedly lead to
major progress in this important problem.
In Fig. 2, we show the evolution of the spin-singlet pairing

wave function at three temperatures. At low temperature,
T=TF ¼ 0.0625 [panel (c)], the system is inside or close to
the superfluid phase, and the results are quantitatively close
to the ground state values [45], which provide a consistency
check. In the BCS regime [logðkFaÞ ¼ þ3.00], the pairing
wave function shows a sharp peak around the Fermi surface,
and in real space it extends through the whole system with a
wave of approximate wavelength λBCS ¼ 2π=kF, indicating
a Cooper pair with size comparable to the system size.

In the BEC regime [logðkFaÞ ¼ −1.00], the pairing
wave function becomes rather flat in reciprocal space,
and tightly bound in real space with size much smaller than
the interparticle spacing 1=kF. Between these limits, the
pairing wave function provides a visualization of the
crossover process. As the interaction strength increases,
the wave function smoothly evolves across a strongly
interacting “unitary” regime,with the peak at short distance
growing rapidly and the tail of the real-spacewave function
decaying correspondingly.
Toward higher temperatures T=TF ¼ 0.125 and T=TF ¼

0.25 as shown in Figs. 2(b) and 2(a), the peak of the pairing
wave function ϕ↑↓ðkÞ is suppressed. Correspondingly, the
tail of the real-space wave function is seen to decay
significantly as T=TF is increased. This trend is more
pronounced in the BCS regime at logðkFaÞ ¼ þ3.00 (black
lines). The evolution of the pairing wave function versus
temperatures in the crossover and BEC regimes are more
gradual. The difference in the pairing wave function appears
to be quite mild with respect to whether the system is in the
normal or superfluid phase, i.e., whether above or below the
transition temperature given in Fig. 1. (A larger difference is
seen in the finite-size condensate fraction [51].)
The momentum distributions for fermions and Cooper

pairs can be measured in experiments [24]. To allow direct
comparisons, we have computed both quantities in our
AFQMC calculations. The pair momentum distribution is
obtained by extending the pairing matrix in Eq. (2) to
Cooper pairs with finite center-of-mass momentum Q as

Mkk0;Q¼hΔþ
kQΔk0Qi−δkk0 hcþkþQ↑ckþQ↑ihcþ−k↓c−k↓i; ð3Þ

with Δþ
kQ ¼ cþkþQ↑c

þ
−k↓. At each Q, we measure the

Mkk0;Q matrix, and its leading eigenvalue is identified as
the pair momentum distribution nQ. Thus, nQ¼0 recovers
the condensate fraction result discussed earlier. The
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FIG. 2. The singlet pairing wave function in reciprocal space versus jkj=kF (main plots), and its Fourier transform, the real space
pairing wave function plotted versus kFjrj along the diagonal line (x ¼ y) (insets). Three temperatures are displayed, from high to low, in
the three panels from left to right: (a) T=TF ¼ 0.25, (b) T=TF ¼ 0.125, and (c) T=TF ¼ 0.0625. In each panel five logðkFaÞ values are
shown, as indicated by the legends on top, to span the entire range of the interaction strength. The statistical uncertainties are smaller
than the symbol size in all cases and are not shown. In the main plots, the Fermi surface is indicated by a vertical dot-dashed line. These
calculations are performed with L ¼ 45 and Ne ¼ 58.
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results for nQ are shown in Fig. 3, for three representative
interactions. In each case, the pair momentum distribution
becomes rapidly centered at Q ¼ 0 as the temperature is
decreased. This behavior is consistent with that of a system
of interacting bosonic Cooper pairs, in which only theQ ¼
0 component will survive in the ground state in the bulk
limit. At finite temperatures, some of the Cooper pairs can
either be broken into individual fermions or simply acquire
a velocity (momentum), turning into finite center-of-mass
momentum pairs [63]. Furthermore, we find that ln nQ
exhibits a linear dependence on ðjQj=kFÞ2 [51], consistent
with the observation in Ref. [24], which also applied it as a
temperature gauge for the experiment. It is particularly
interesting to note the behavior of the peak atQ ¼ 0 as T is
lowered through TBKT. In the “unitary” regime [panel (b)],
the two lowest temperatures are both below TBKT, while the
third, T=TF ¼ 0.1875, is above but close to it, as seen in
Fig. 1. In comparison, in the BEC regime [panel (a)] only
T=TF ¼ 0.0625 is below TBKT, while T=TF ¼ 0.125 is
above but close to it. We see that the behavior of the peaks
at Q ¼ 0 in these systems shows a direct relation to where
they are with respect to the transition temperature.
The fermion momentum distribution is shown for the

same systems in the insets of Fig. 3. In contrast with the
pair momentum distribution, nðkÞ shows significantly less
temperature dependence. In the weakly interacting BCS
regime, we see the steplike function around the Fermi
surface at low T, as expected. As T=TF is increased, more
fermions become thermally excited, with nðkÞ showing
substantial modification from the ground-state result at the
highest T shown, which is approximately 20 × TBKT. As
the interaction strength is increased to the other two values,
nðkÞ is increasingly broader due to interaction effects
reflecting the BCS-BEC crossover. However, its response
to temperature variation becomes much reduced, and is
barely noticeable in the BEC regime. The nðkÞ results at
the lowest temperature is in close agreement with the
ground-state results [45].

The contact C [64–66] is an important quantity in the
strongly interacting Fermi gas, and it governs the asymptotic
behaviors of several key properties in momentum space, for
example, nðkÞ. In the 3D unitary Fermi gas, experimental
measurements of the contact across the superfluid transition
[67–70] have allowed thorough comparisons with various
numerical results [71]. In the 2D Fermi gas, the contact was
experimentally measured [22] at T=TF ¼ 0.27 and numeri-
cally calculated via ground state QMCmethods [43,45]. The
contact as a function of temperature was also studied [47],
though this was limited to the normal phase and rather small
system size as mentioned earlier.
Here, we report exact numerical results of the contact in the

full range of temperatures crossing the BKT transition, in
large lattice sizes, for the strongly interacting 2D Fermi gas.
We compute the contact density C ¼ C=Ns in units of
k4F via the double occupancy D as C=k4F ¼ m2U2D=
ð4π2n2Þ. We have also confirmed the asymptotic behavior
of nðkÞk4 ∼ C at mediate to low temperatures and extracted
the contact by fitting the tail ofnðkÞ, which yielded consistent
results for C [51]. Our results of the contact are shown in
Fig. 4. While the BCS mean-field theory predicts a phase
transition at around T=TF ≃ 0.8 (CBCS=k4F is proportional to
the square of the mean-field order parameter), our QMC
results show an increase of the C=k4F as the temperature is
lowered, followed by a shallow maximum around the BKT
transition, and then a decreasewhich smoothly connects with
the ground state result [45]. This behavior is qualitatively
different from 3D, where the contact shows a dramatic
increase when entering the superfluid phase [69–71].
In summary, employing major advances in AFQMC

algorithms, we have studied the finite-temperature proper-
ties of 2D Fermi gas with zero-range attractive interaction.
Reaching large lattice sizes, we scan a wide range of
interaction strengths and temperatures, and determine the
phase diagram of the BKT transition. We systematically
characterize the BCS-BEC crossover by the pairing wave
functions in both reciprocal and real space. We compute
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FIG. 3. The momentum distributions for Cooper pairs nQ versus jQj=kF (main plot) and fermions nðkÞ versus jkj=kF (insets), for
three interaction strengths: (a) logðkFaÞ ¼ −1.0 in BEC regime, (b) logðkFaÞ ¼ þ0.5 in crossover regime, and (c) logðkFaÞ ¼ þ3.5 in
BCS regime, with temperatures T=TF ¼ 0.0625 ∼ 0.5. These calculations are performed with L ¼ 45 and Ne ¼ 58, and the
corresponding TBKT=TF values from Fig. 1 are indicated.

PHYSICAL REVIEW LETTERS 129, 076403 (2022)

076403-4



both the fermion and pair momentum distributions at finite
temperatures, and observe behaviors consistent with exper-
imental results. We have also accurately determined the
contact versus temperature, and find that it exhibits differ-
ent behaviors from the 3D case which has been well
characterized experimentally.
We hope that these results will serve as a useful guide for

experiments, and provide comparison and benchmark for
the many analytical and computational studies being stimu-
lated by the intense ongoing experimental efforts. This study
also paves the way for further precision many-body com-
putations in the 2D Fermi gas, including effective range
effects [72–74], the pseudogap phenomena [15,42,72], and
spin-orbit coupling [75], among many others.
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