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Ab initio calculations of the phonon-induced band structure renormalization are currently based on the
perturbative Allen-Heine theory and its many-body generalizations. These approaches are unsuitable to
describe materials where electrons form localized polarons. Here, we develop a self-consistent, many-body
Green’s function theory of band structure renormalization that incorporates localization and self-trapping.
We show that the present approach reduces to the Allen-Heine theory in the weak-coupling limit, and to
total energy calculations of self-trapped polarons in the strong-coupling limit. To demonstrate this
methodology, we reproduce the path-integral results of Feynman and diagrammatic Monte Carlo
calculations for the Fröhlich model at all couplings, and we calculate the zero point renormalization
of the band gap of an ionic insulator including polaronic effects.
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The past decade has seenmuch progress in first-principles
calculations of phonon-induced renormalization of band
structures, including temperature dependence and quantum
zero-point effects [1,2].For example, since the initialab initio
implementations [3,4] of the Allen and Heine (AH) theory
[5], several improvements have been made, including
calculations of complete band structures of semiconductors
[6–9] and nonadiabatic effects [10,11]. On a related front,
ab initiomany-body Green’s function approaches have been
used to calculate [12–22] band structure kinks and satellites
observed in angle resolved photoelectron spectra [23–29],
cf. Figs. 1(a) and 1(b). One important limitation of these
methods is that they do not consider the possibility of
electron localization into a polaron.
A polaron forms when an excess electron induces a

distortion of the crystal lattice, which in turn acts as a
potential well and promotes electron localization [30–32].
Calculations of polarons are usually performed by adding
or removing an electron from a large supercell using
density-functional theory (DFT) [33–39], cf. Figs. 1(d)
and 1(e). To overcome the DFT self-interaction error and
the computational complexity of large supercell calcula-
tions, this direct approach has recently been reformulated as
a nonlinear eigenvalue problem within density-functional
perturbation theory (DFPT) [40,41]. These “polaronic”
methods carry two limitations: ions are described using
the adiabatic Born-Oppenheimer approximation, and quan-
tum nuclear effects are neglected.

The relation between AH-based approaches, which
include many-body effects but do not consider electron
localization, and polaronic approaches, which capture
localization effects but do not include nonadiabaticity
and quantum fluctuations, remains unclear. In particular,
it is unclear whether these methods describe the same
physics, so that they can be used interchangeably, or else
they capture separate phenomena. Furthermore, it is unclear
whether one approach is to be preferred over another for
specific classes of materials.
Here, we address these questions by developing a self-

consistent many-body Green’s function theory of phonon-
induced band structure renormalization that includes non-
adiabatic effects and localization on the same footing. We
show that the present theory reduces to AH-based
approaches for materials that host large polarons, and to
the ab initio polaron equations of Ref. [41] formaterialswith
small polarons. To illustrate the broad applicability of this
method,we calculate the energy of the Fröhlich polaron, and
we obtain very good agreement with the path integral results
of Feynman [42] and with diagrammatic Monte Carlo
calculations [43,44]. As a first ab initio calculation using
this method, we obtain the phonon-induced band gap
renormalization of LiF, and we show that polaron localiza-
tion effects dominate over the standard Fan-Migdal (FM)
and Debye-Waller (DW) self-energies [2].
The effective Hamiltonian describing a coupled electron-

phonon system is given by [2,45]
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where εnk represents the single-particle eigenvalue of an
electron in the band n with crystal momentum k, ωqν is the
frequency of a phonon in the branch ν with crystal
momentum q, and ĉ†nk=ĉnk and â†qν=âqν are the associated
fermionic and bosonic creation and annihilation operators,
respectively; gmnνðk;qÞ denotes the electron-phonon cou-
pling matrix element between the electrons nk andmkþ q
via the phonon qν, and Np is the number of unit cells in the
periodic Born-von Kármán supercell. The limitations of
the effective Hamiltonian in Eq. (1) are discussed in the
companion manuscript [45]
To investigate the ground state of the Hamiltonian in

Eq. (1) in the presence of an excess electron or hole, we
focus on the electron Green’s function. We consider a
periodic crystal with N electrons, and we define the
electron Green’s function as the expectation value of the
field operators over the ground state of the N þ 1-particle
system: G12 ¼ −ði=ℏÞhN þ 1jT̂ĉ1ĉ†2jN þ 1i. In this defi-
nition we use the compact notation 1 ¼ fn1;k1; t1g and
2 ¼ fn2;k2; t2g, t is the time, and T̂ is the time-ordering
operator. Our present definition of Green’s function differs
from the conventional definition [46] where the expectation
value is over the ground state jNi; this choice is essential to
capture localization effects. Using Schwinger’s functional
derivative technique [2,46,47], in the companion manu-
script [45] we derive the following Dyson equation:

G12 ¼ G0
12 þ G0

13ðΣFM
34 þ ΣP

34ÞG42; ð2Þ

where summation over repeated numbered indices is
implied throughout the manuscript. In this expression,

G0 is the Green’s function in the absence of electron-
phonon interactions, ΣFM is the Fan-Migdal self-energy
[2,48–50], and ΣP is a new contribution that we call
“polaronic” (P) self-energy.
The Fan-Migdal self-energy is given by:

ΣFM
12 ¼ ig314G3ð1Þ;5Γ526D6;4ð1Þ; ð3Þ

where the electron-phonon matrix elements is written
compactly as g123 ¼ N−1=2

p gn2n1ν3ðk1;q3Þδk2;k1þq3 , the
notation G3ð1Þ;5 stands for Gn3k3;n5k5

ðt1; t5Þ, and there is
no summation over bracketed indices. In Eq. (3), D is the
phonon Green’s function and Γ is the electron-phonon
vertex; explicit expressions for these quantities are provi-
ded in Ref. [45].
The polaronic self-energy ΣP appearing in Eq. (2) is

given by

ΣP
12 ¼ δðt1 − t2Þg213

hẑ3i
l3

: ð4Þ

In this equation, l3 ¼ lqν is a short for the zero-point
displacement amplitude, and the term hẑ3i ¼ hẑqνi repre-
sents the expectation value of the normal vibrational
coordinates ẑqν over the ground state of the N þ 1-particle
system, hN þ 1jẑqνjN þ 1i, which is directly related to the
atomic displacements in the polaronic configuration [45].
This expectation value depends in turn on the many-body
electron density via the equal-time Green’s function, hẑ3i ¼
−il3ð2=ω3Þg�453G5ð1Þ;4ð1þÞ [45]. ΣP is nonzero whenever the
atoms of the N þ 1-electron ground state are displaced
from the equilibrium sites of the N-electron ground state;
hence, it describes polaron localization effects.
Equations (1)–(4) define a self-consistent formulation of

the electron-phonon renormalization of energy bands that
includes the effects of polaron formation. The relation

FIG. 1. (a) Schematic illustration of the ground state of the N-electron system, with atoms vibrating around the equilibrium sites of the
periodic crystal. (b) Schematic of phonon-induced band structure renormalization, as obtained by using the FM and DW self-energies.
The dashed line is the noninteracting band, the brown lines are the renormalized band and its phonon sidebands. (c) Self-consistent set of
equations for calculating electron-phonon renormalization of band structures including polaron localization effects, Eqs. (1)–(4).
(d) Schematic illustration of the ground state of the N þ 1-electron system, where the excess electron forms a localized polaron. (e) In
the scenario illustrated in (d), the energy of the conduction band bottom is lowered by the formation energy of the polaron.
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between these equations is schematically illustrated in
Fig. 1(c).
Since our formalism starts from Eq. (1), which does not

include terms of second order in the atomic displacements,
our self-energy Σ does not contain the standard Debye-
Waller contribution. This term must be added separately, as
described in the companion manuscript [45].
The above formalism can be turned into a practical

computational method by expressing the Fourier transform
of the Green’s function into frequency domain ω via Dyson
orbitals fsðrÞ using the Lehmann representation, GðωÞ ¼P

s fsf
�
s=½ℏω − εs − iηsgnðμ − εsÞ�, where μ is the chemi-

cal potential, and η → 0þ. The Dyson orbitals of the
occupied manifold are given by fsðrÞ¼hN;sjψ̂ðrÞjNþ1i
[45,46], where jN; si denotes the sth excited state of the
N-electron system, ψ̂ðrÞ is the electron field operator, and
εs¼ENþ1−EN;s. In Ref. [45] we show that we can identify
the Dyson orbital for the lowest-energy excitation of the
N þ 1-particle system with the electronic component of the
polaron wave function. Following the strategy of Ref. [41],
we expand the orbitals in the basis of single-particle Bloch
wave functions ψnk, fs ¼ N−1=2

p
P

nk A
s
nkψnk. This repre-

sentation allows us to recast Eqs. (2)–(4) into a nonlinear
eigenvalue problem for the quasiparticle amplitudes As

nk
and the electron addition or removal energies εs:

½ε1δ12 þ ΣFM
12 ðεs=ℏÞ þ ΣP

12�As
2 ¼ εsAs

1; ð5Þ

where

ΣFM
12 ðωÞ¼�g�143g253

X

s

As
4A

s;�
5

Np

θ½�ðεs−μÞ�
�ℏω∓ εs−ℏω3þ iη

; ð6Þ

ΣP
12 ¼ −

2g213g�543
ℏω3

Xεs<μ

s

As
4A

s;�
5

Np
: ð7Þ

In Eq. (6), there is a sum over the � terms and θ is the
Heaviside step function. The same expressions are given
without using compact notation in Eqs. (41) and (45) of the
companion manuscript [45]. To reach Eq. (6) we approxi-
mated the vertex Γ by the standard electron-phonon matrix
element g, and we replaced the interacting phonon Green’s
function D by its adiabatic counterpart, as obtained, e.g.,
from DFPT calculations.
Equations (5)–(6) are still too complex for ab initio

calculations. To proceed further, we assume that the added
electron in the (N þ 1)-electron system has a negligible
effect on the valence manifold of the N-electron system.
The validity of this assumption is assessed in Ref. [45].
With this choice, the N occupied Dyson orbitals can be
replaced by Bloch wave functions, and their contribution
to ΣP vanishes, while the Dyson orbital of the excess
electron is to be determined by solving the equations self-
consistently. After this simplification, and replacing the

Green’s function by its noninteracting counterpart in
Eq. (6), where Eqs. (6) and (7) become

ΣFM
nk;n0k0 ðωÞ ¼ � δnk;n0k0

Np

X

mqν

jgmnνðk;qÞj2

×
θ½�ðεmkþq − μÞ�

�ℏω ∓ εmkþq − ℏωqν þ iη
; ð8Þ

ΣP
nk;n0k0 ¼ −

2

N2
p

X

mm0νk00
Am0k00þk−k0A�

mk00

×
g�m0mνðk00;k − k0Þgnn0νðk0;k − k0Þ

ℏωk−k0ν
: ð9Þ

These equations can be solved by using electron band
structures, phonon dispersions, and electron-phonon matrix
elements from DFT and DFPT, as we show below. Once
obtained the Dyson orbital and quasiparticle eigenvalue by
solving Eqs. (5), (8), and (9), we determine the ground-state
energy of the (N þ 1)-electron system using a generalized
Galitskii-Migdal formula [51] that we derived in Ref. [45]
for the coupled electron-phonon Hamiltonian in Eq. (1).
The Fan-Migdal self-energy in Eq. (8) is diagonal in the

electron wave vector; therefore, this term does not con-
tribute to electron localization. Thus, the shape of the
polaron quasiparticle is determined by the polaronic term,
and in the lowest-order approximation we can evaluate
Eqs. (8) and (9) using a simplified procedure where we first
solve for the polaron wave function with Eq. (9), and then
we include ΣFM using perturbation theory. In Ref. [45] we
show that this procedure leads to the following expression
for the polaronic total energy renormalization of the system
with an excess electron:

ΔE ¼ N−1
p

X

nk

jAnkj2½ε0nk − ε0CBM þ ΣFM
nk;nkðω ¼ ε0CBM=ℏÞ�

þ 1

2
N−1

p

X

nk;n0k0
A�
nkΣP

nk;n0k0An0k0 ; ð10Þ

where ε0CBM represents the energy of the conduction band
minimum of the periodic, undistorted lattice. This expres-
sion has an appealing physical interpretation. The first term
on the right-hand side is the weighted average of the
conduction band energy and the Fan-Migdal self-energy,
taken over the polaron wave function coefficients in
reciprocal space. The last term is the stabilization energy
of the electron wave function resulting from the lattice
distortion in the polaronic ground state. Therefore, the total
energy renormalization is a combination of both AH-type
and polaronic contributions, with their relative importance
being dictated by the spatial extent of the wave function. To
illustrate this point, we apply the present methodology to
the Fröhlich model [31,52–54].
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The Fröhlich model is a standard benchmark for testing
theories of coupled electrons and phonons [31]. It describes
a free electron coupled to a dispersionless longitudinal
optical phonon, with the coupling strength controlled by a
dimensionless parameter, the Fröhlich coupling constant α.
AH-based approaches are successful in describing theweak-
coupling regime (α ≪ 1) of this model, while polaronic
approaches such as the Landau-Pekar theory [55,56] are
successful at strong coupling (α ≫ 10) [57], cf. Fig. 2(a).
State-of-the-art numerical results for the ground-state
energy of the Fröhlich polaron come from diagrammatic
Monte Carlo methods [43,44,58]. As of today, the only
theory that matches diagrammatic Monte Carlo results at all
coupling strengths is the variational path integral approach
by Feynman [42,59].
Figure 2(a) shows the energy of the Fröhlich polaron as a

function of α, as calculated from Eq. (10). The agreement
between our present approach and both Feynman’s solution
and diagrammatic Monte Carlo data is very good at all
couplings. In particular, our method correctly captures the
expected linear dependence of the energy on α at weak

coupling, ΔE ¼ −αℏω, and its quadratic dependence at
strong coupling, ΔE ¼ −α2ℏω=3π [31], cf. Fig. 2(a).
These limits can be rationalized by examining the relative
contributions to the total energy shown in Fig. 2(b). At
small α, the quasiparticle amplitudes concentrate near the
conduction band bottom (CBM), thus leading to large
polarons in real space [cf. inset of Fig. 2(a)]. In this limit,
the expectation value of ΣP tends to vanish, and the Fan-
Migdal self-energy tends to ΣFM ¼ −αℏω. Conversely, at
large α the quasiparticle amplitudes spread across the entire
reciprocal space, leading to electron localization into a
small polaron. In this limit, ΣP ¼ −α2ℏω=3π dominates.
To illustrate the use of the present method for real

materials, we calculate the zero-point renormalization of
rock salt LiF, a prototypical ionic insulator. This system
hosts both large electron polarons and small hole polarons
[41]; therefore, it is particularly suited to analyze the
relative magnitude of the various self-energies in the
valence and conduction bands. All calculations are
based on QUANTUM ESPRESSO [60], WANNIER90 [61], and
EPW [62], and the computational setup is described in
the companion manuscript [45]. We initialize the self-
consistent solution of the polaron equations with a
Gaussian wave packet. This step is needed to break
translational symmetry, as discussed in Ref. [45]. We
verified that different initializations lead to equivalent
self-consistent polaron solutions in all cases [45].
Figure 3 summarizes our results. In panels (a) and (b) we

show the renormalization of the conduction band minimum
and of the valence band maximum with respect to the DFT
band edges, respectively. The quasiparticle amplitudes are
represented by the solid yellow circles superimposed to the
bands, with the radius being proportional to the square
modulus jAnkj2. In panels (c) and (d) we show how the AH
band shift varies along the conduction and valence bands,
respectively. In these calculations we evaluate the correc-
tion by including both the Fan-Migdal and the Debye-
Waller self-energies, ΣFM þ ΣDW [45], to be consistent with
previous work [18]. In both cases we see that this correction
is largest at the zone center, and decreases toward the edges
of the Brillouin zone. The localization of the polaron wave
function softens this correction by averaging it over a range
of wave vectors, according to the quasiparticle amplitudes
shown in (a) and (b).
In panels (e) and (g) of Fig. 3 we compare standard

calculations of band renormalization using the Fan-Migdal
and Debye-Waller self-energies (FM and DW) with our
present approach. In the conduction band, the FM and DW
corrections (0.43 eV) are seen to yield a similar result as the
total polaronic renormalization (0.60 eV). This finding is
consistent with the observation that an excess electron in
LiF forms a large electron polaron extended over more than
10 unit cells, as shown in panel (d). In this scenario, the
electron wave function is so delocalized that AH-based
approaches provide a good description of the energy

this Letter

FIG. 2. (a) Ground-state energy of the Fröhlich polaron,
ΔE=ℏω, as a function of the coupling strength α: present
calculation (blue line), Feynman’s path integral results [42] (gray
line), and diagrammatic Monte Carlo (DMC) data taken from
Ref. [58] (black circles). Red lines indicate the asymptotic
expansions at weak and strong coupling, respectively. The
quasiparticle amplitudes jAkj2 in these limits are shown in the
inset, superimposed to the free electron band. (b) Breakdown of
the ground-state energy of the Fröhlich polaron into its self-
energy contributions.
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renormalization. Conversely, in the valence bands the
polaronic renormalization (2.20 eV) is much larger than
the FM and DW corrections (0.80 eV). This finding is
consistent with the fact that an excess hole in LiF forms a
small polaron, as shown in panel (h).
By combining the above zero-point corrections for the

valence and conduction band edges, we obtain a quantum
zero-point quasiparticle band gap renormalization of
−2.8 eV. This value is considerably larger than what
one obtains by using the Fan-Migdal and Debye-Waller
self-energies at the band edges, −1.2 eV. This difference
suggests that AH-based approaches may not be as reliable
as previously thought in calculations of band gap renorm-
alization, because they do not take into account localization
effects. We emphasize that this conclusion holds for
systems that host spatially localized polaronic states such
as ionic compounds and oxides. Standard semiconductors
such as silicon and diamond [3,4,6,7,11] do not host
localized polarons; therefore, in such cases AH-based
approaches remain the current state of the art.
In summary, we developed a self-consistent many-body

theory of electron-phonon couplings that unifies calcula-
tions of phonon-induced energy band renormalization and
polaron localization. We found that the lowest-order
approximation to our theory matches Feynman’s results
for the Fröhlich polaron. This methodology is amenable to
first-principles implementations, as we have demonstrated
for LiF. Future work will need to systematically assess
polaronic corrections to the band renormalization of

semiconductors and insulators, investigate the present
formalism beyond the lowest-order approximation, and
extend this work to calculations of complete band struc-
tures, phonons sidebands in angle-resolved photoemission
spectroscopy spectra, finite-temperature effects, and optical
band gaps including excitonic effects. We hope that this
study will stimulate renewed efforts to understand polarons
and their properties in real materials.
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