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Unlike crystalline solids or ideal gases, transport properties remain difficult to describe from a
microscopic point of view in liquids, whose dynamics result from complex energetic and entropic
contributions at the atomic scale. Two scenarios are generally proposed: one represents the dynamics in a
fluid as a series of energy-barrier crossings, leading to Arrhenius-like laws, while the other assumes that
atoms rearrange themselves by collisions, as exemplified by the free volume model. To assess the validity
of these two views, we computed, using molecular dynamics simulations, the transport properties of the
Lennard-Jones fluid and tested to what extent the Arrhenius equation and the free volume model describe
the temperature dependence of the viscosity and of the diffusion coefficient at fixed pressure. Although
both models reproduce the simulation results over a wide range of pressure and temperature covering the
liquid and supercritical states of the Lennard-Jones fluid, we found that the parameters of the free volume
model can be estimated directly from local structural parameters, also obtained in the simulations.
This consistency of the results gives more credibility to the free volume description of transport properties
in liquids.
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Introduction.—Modeling how liquids flow is a subject of
great fundamental interest and of major importance in
many industrial applications (composite molding [1],
lubricants [2], pharmaceutical [3], etc.). The main property
that characterizes the flow of liquids is viscosity, which
depends on the nature of the liquid and its environment, in
particular pressure and temperature. Experimental research
work has shown, since the 1930s, that the temperature
dependence of viscosity obeys an Arrhenius-type equa-
tion, called the Andrade’s law, in a wide variety of liquids
[4–7]. Drawing on this observation, some models based
on Eyring’s equation propose that viscosity is controlled
by the breaking of interatomic bonds in the liquid (i.e., the
crossing of energy barriers) [8–10], but the identification
of these breaking events is questionable in simple liquids.
We will call this approach Eyring’s model. Another line of
thought, embodied by the free volume model, describes
the dynamics of atoms as a succession of hard-sphere-
like collisions that may result in local mass transport.
Although the free volume model has been used to describe
the transport properties of many liquids [11–14], it is
based on a microscopic concept—the free volume—that is
difficult to relate to local atomistic parameters. Moreover,
being derived at constant density, this model does not
offer a direct explanation of the experimentally observed
Arrhenius law.
In this Letter, we use molecular dynamics (MD) simu-

lations to measure the viscosity of the one-particle Lennard-
Jones (LJ) fluid and discriminate between these two
descriptions of transport. The LJ model, in addition to

exhibiting the generic structural and dynamical properties
of most liquids bound by van der Waals or metallic
interactions [15], has been shown to quantitatively repro-
duce the behavior of various atomic or molecular fluids,
such as rare-gas liquids, carbon dioxide, and linear or
aromatic hydrocarbons [16,17]. We start by measuring
viscosity across the LJ fluid’s pressure-temperature phase
diagram and then determine the region in which the
Arrhenius equation holds. As the two considered models
are intrinsically built to describe diffusion rather than
viscosity, we also evaluate diffusion coefficients and show
that the Stokes-Einstein law holds in the Arrhenius-vis-
cosity domain. This enables us to analyze the microscopic
origin of the parameters entering in the description.
Although both Eyring and free volume models contain
two parameters, we find that one of the parameters of the
free volume model—the intrinsic particle volume—can be
evaluated directly from the simulations, by analyzing the
fluid’s microstructure. Eventually, we discuss the param-
eters of the Arrhenius equation in light of the free volume
model and suggest that the emergence of the Arrhenius
law, although compatible with an energetic picture, is only
accidental.
Methods.—We carry out molecular dynamics simula-

tions, using the LAMMPS code [18], to compute the
viscosity and diffusion coefficient of a one atom type
12-6 LJ fluid, defined by the following interaction poten-
tial: UðrÞ ¼ 4ϵ½ðσ=rÞ12 − ðσ=rÞ6�, where ϵ and σ are the
usual potential energy and particle diameter parameters,
respectively, and r is the interatomic distance. The potential
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is truncated at a cutoff distance rc ¼ 3σ. The simulations
are run at a constant number of particles, temperature, and
pressure and cover a wide range of temperature and
pressure values in the liquid and supercritical phases.
Details about values explored here are given in the
Supplemental Material [19]. All of our results are reported
in LJ reduced units, using ϵ, σ, and the particle mass m as
measures of energy, distance, and mass.
We followed the Green-Kubo method to compute the

viscosity η [20,21]: η ¼ limt→∞ðV=TÞ
R
t
0 CijðτÞdτ, with V

the simulation box volume, T the temperature, t the final
correlation time, and CijðτÞ the autocorrelation function, at
time τ, of the nondiagonal elements pij of the pressure
tensor: CijðτÞ ¼ hpijðτÞpijð0Þi. We computed the diffusion
coefficientD from the mean-square displacement hr2ðtÞi in
the diffusive regime, as follows: D ¼ 1

6
ðd=dtÞhr2i. More

details on the MD simulations can be found in the
Supplemental Material [19].
Results.—After having computed the viscosity η at

different temperatures and pressures in the liquid and
supercritical phases, we fitted the temperature dependence
of η, at fixed pressure, with the Arrhenius law [22]:

ηðT;pÞ ¼ η0ðpÞe
QðpÞ
T ; ð1Þ

where η0 and Q are the pre-exponential factor and the
activation energy, respectively. The results reported in
Fig. 1 show that there exists, at each pressure, a significant
range of temperatures over which viscosity is well
described by the Arrhenius model. As shown in the
Supplemental Material [19], the activation energy Q is
constant with pressure at low pressures, and increases for
p≳ 3; in contrast, η0 increases at all pressures.

To further characterize the range of validity of the
Arrhenius model, we represent the region of the pres-
sure-temperature phase diagram over which the Arrhenius
equation holds in Fig. 2 (we considered a fit valid as long as
it did not deviate from the data by more than the error bars).
This region covers mainly the liquid phase, and also part of
the supercritical fluid phase.
To investigate the microscopic origin of the Arrhenian

behavior of viscosity, we make a detour through atomic
diffusion. This step is motivated by the idea that it is easier
to build a physical picture of mass transport than one of
momentum transport, and also by the possible relation
between both types of transport, through the Stokes-
Einstein (SE) law [24–27]. Indeed, according to this law,
the diffusion coefficient is inversely proportional to the
viscosity:

D ¼ T
6πRhη

; ð2Þ

where Rh is an effective hydrodynamic radius [24–27]. The
hydrodynamic radius is traditionally defined by mapping
the viscous drag force F on a particle moving with a
velocity U to the continuum calculation of Stokes for a
no-slip sphere: F ¼ 6πηRhU. Note that for a single atom,
one could also map the drag to that of a slipping sphere,
F ¼ 4πηRslip

h U. This, however, would only change the

hydrodynamic radius by a constant prefactor: Rslip
h ¼ 3

2
Rh.

In practice, we computed Rh by combining the simulation
data for viscosity and diffusion: Rh ¼ T=ð6πηDÞ. For the
SE law to hold, Rh must be independent of the temperature.
We verify this in Fig. 3 (top), where we plot the temperature
dependence of the hydrodynamic radius for each of the
pressures studied in Fig. 1. We observe that while Rh

FIG. 1. Arrhenius plot of the temperature dependence of
viscosity for pressures varying from p ¼ 0.01 to p ¼ 50. At
each pressure, simulation results are represented in a range of
temperatures over which they are well fitted by an Arrhenius law
(straight line).

FIG. 2. Pressure-temperature phase diagram of the Lennard-
Jones fluid (coexistence lines are taken from Ref. [23]). The blue
crossed area represents the region over which viscosity is well
described by the Arrhenius equation.
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systematically decreases with increasing pressure, it varies
only slightly (by less than 10%)with temperature at constant
pressure, which validates the SE law. Interestingly, the
hydrodynamic radius Rh appears to be proportional to the
equilibrium distance de between atoms, calculated as
the position of the first peak of the radial distribution
function (RDF) [19]. This is illustrated in Fig. 3 (bottom),
where the pressure dependence of the temperature-averaged
hydrodynamic radius R̄h is fitted by multiplying the temper-
ature-averaged equilibrium distance d̄e by a factor 0.365.
As a side note, the slip hydrodynamic radius is then given by
R̄slip
h ¼ 3

2
R̄h ¼ 0.548d̄e; hence, it is close to half the “static”

particle diameter, defined from the equilibrium interparticle
distance.
Having established the validity of the SE law, we can

now proceed with the modeling of the diffusion phe-
nomenon. Combining the Arrhenius law describing the
viscosity, Eq. (1), with the SE law, Eq. (2), one obtains
that the diffusion coefficient is described by a pseudo-
Arrhenius law:

D ¼ D0
0Te

−Q
T ; ð3Þ

where D0
0 ¼ 1=ð6πRhη0Þ. As shown in Fig. 4, Eq. (3)

reproduces the simulation results accurately. Because of
the observed Arrhenian behavior of viscosity and diffu-
sion, it is tempting to turn to microscopic theories that
directly encode the Arrhenius equation. The reaction rate
theory or so-called Eyring’s model, in particular, describes
diffusion as a succession of local atomic rearrangements,
each of which consists of the crossing of a free energy
barrier [8]. The rates at which these crossings occur are

controlled by their free energy barrier through the Eyring
equation. This equation is a microscopic counterpart of
the Arrhenius law, and then, it is natural that an Arrhenius
behavior emerges at the continuous scale from such a
process. Despite this good agreement with observations,
this approach suffers from various shortcomings. First,
identifying local rearrangements in simple liquids is
difficult as they lack any energetic bonds that would
survive thermal agitation long enough so that they can be
spotted. Another closely related issue lies in the fact that
the activation energies obtained from the slopes of the
curves in Fig. 1 (values reported in the Supplemental
Material [19]) are comparable to or even lower than the
thermal energy in the range of temperature explored. This
is incompatible with the reaction rate theory, which is built
on the prerequisite that the system has time to explore its
local environment before crossing a barrier to a neighbor-
ing local minimum in the free energy landscape [28].
The inadequacy of energy-barrier-crossing models led us

to investigate mass transport through the free volume
model. According to this model, in a system of particles
maintained at fixed density and under thermal agitation,
collisions between particles constantly redistribute free
volumes, which sometimes create voids above a criti-
cal volume necessary for a particle to diffuse in. The free
volume model is built upon two main parameters: the
critical volume vc, which is of the order of the size of the
cage formed around a particle by its closest neighbors [29],
and the mean free volume vf, which is equal to the average
volume per particle 1=ρ, minus the average volume per
particle in a state where the system’s dynamics is frozen,
typically the glass state. This latter average volume is called
the intrinsic particle volume v0 [11–13]. Within the free
volume model [11–14], the diffusion coefficient reads as

FIG. 3. Testing the validity of the Stokes-Einstein law. (Top)
Temperature dependence of the hydrodynamic radius Rh and
equilibrium distance de at different pressures. (Bottom) Pressure
dependence of the temperature-averaged hydrodynamic radius R̄h

and the equilibrium distance d̄e.

FIG. 4. Comparison between the numerically measured
diffusion coefficient, the Arrhenius-like model, and the free
volume model.
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D ¼ D0e
−vc
vf ; ð4Þ

where D0 ¼ gvthL, with vth the thermal velocity of the
particles, L the mean free path, and g an empirical geo-
metric factor. The factor g is often fixed at 1

6
[11,12,29,30],

but it turns in our simulation to be closer to 1
3
, which we will

select in the following. One of the main criticisms of the
free volume model lies in the empirical definition of the
parameters it builds upon. However, it was recently shown
that these parameters can be evaluated directly from
microscopic properties in molecular, alkane-based, fluids
[14]. Along the same lines, we try in the following to define
the different parameters entering the free volume diffusion
coefficient equation, Eq. (4), from microscopic measure-
ments and evaluate the extent to which these nonempirical
parameters can describe diffusion.
The thermal velocity vth is by definition vth ¼

ffiffiffiffiffiffi
3T

p
. The

mean free path L is extracted from the mean square
displacement data as the distance traveled by the particle
when leaving the ballistic phase (see the Supplemental
Material for details [19], and results in Fig. S5). L is shown
to be well described by the single cubic cell model [31],
L ¼ 2ðρ−1=3 − aÞ, with ρ−1=3 the average distance between
the particles and a the hard-core diameter of the particles,
which we identified with the contact distance dc measured
from the RDF [19]; consequently, in the following, we will
use the single cubic cell model to compute L.
We then estimate the mean free volume vf, which is the

difference between the average volume per particle 1=ρ, set
in the simulation, and the intrinsic particle volume v0; the
latter is the average volume per particle at the same pressure
and temperature, but in the glass state: v0 ¼ 1=ρglass. At
low temperatures, we could obtain the glass state by rapidly
quenching the liquid at constant pressure. We then found
that v0 varies as v0ðT;pÞ ¼ v00ðpÞf1þ αðpÞTg, with
v00ðpÞ the intrinsic particle volume at zero temperature
and α the thermal expansion coefficient. We used this linear
dependency extracted at low temperatures to extrapolate v0
at any temperature (see details in the Supplemental Material
[19]). Finally, the critical volume vc is fitted from our
results, and we will discuss its value in the following.
We can now systematically compare the diffusion

coefficients computed from MD simulations with their
estimation based on the free volume model [Eq. (4)]. The
results, reported in Fig. 4, show that the free volume
model describes diffusion coefficients with high precision
at low and intermediate pressures, although it becomes
less accurate at the highest pressures (p ¼ 30, 50). The
critical volume vc is found to be on the order of 0.1 at low
pressure and to decrease with increasing pressure [19].
This is in contrast with the usual values reported in the
literature [11,14,29], which are generally closer to the
intrinsic particle volume v0. In particular, the procedure
proposed by Falk et al. [14] to estimate vc from simple

structural parameters in the context of molecular liquids
largely overestimates the values of vc we obtained from
the fits, and does not reproduce the decrease of vc with
pressure that we observed. As a consequence of the small
values of vc for the LJ fluid, the exponential term in the
free volume model, expð−vc=vfÞ, is close to 1, i.e.,
collisions in the fluid very often succeed in causing
diffusion. Note that, in this case, there is no fundamental
issue with the exponential term being close to 1, and no
incompatibility with the underlying theory, in contrast
with the Eyring’s model discussed above.
We are now equipped with two models to describe the

diffusion coefficient and the viscosity—related through
the SE equation—with acceptable precision. Interestingly,
these two models are each constructed on a very different
physical description of mass transport. The fact that it is
possible to recover an Arrhenian behavior with the free
volume model further confirms that the physical picture at
the origin of this behavior is not necessarily one based on
energy-barrier-crossing events. The coincidental nature of
the match between the predictions of the two models is also
emphasized in Fig. S10 of the Supplemental Material [19],
which shows that there is no relation between the expo-
nential terms of the models, neither in terms of amplitude
nor in terms of variation.
Conclusion.—We have run MD simulations to compute

the viscosity and the diffusion coefficient of a simple LJ
fluid for different temperatures and pressures. We observed
that the viscosity is accurately described by the Arrhenius
law in a wide range of temperatures and pressures in the
liquid and supercritical fluid phases. To understand the
microscopic origin of this Arrhenian behavior we made a
detour through the study of the diffusion coefficient. We
verified that the viscosity and diffusion coefficient of the LJ
fluid are correlated through the SE law, with a temperature-
independent hydrodynamic radius Rh that is linked to the
interparticle equilibrium distance de. Even though the
Arrhenius equation reproduces the computed viscosity
and diffusion data, it cannot be derived from reaction rate
theories as these are not suitable to describe the liquid state,
in which activation energies are on the order of or larger
than thermal energies. For this reason, we have considered
the free volume model, which also described well the
evolution of the diffusion coefficient with temperature and
pressure. We have shown that the parameters of the free
volume model can be measured independently, more
specifically, the mean free path and the average free
volume—calculated from the fluid density and the density
of the glass at the same pressure and temperature. This led
us to have only the critical volume as a fitting parameter.
Overall, the free volume model appears more justified from
a microscopic point of view because one can estimate its
parameters from microscopic properties.
In future work, it would be interesting to explore how

the above discussion on the microscopic origin of the
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Arrhenius law observed for a LJ liquid extends to more
complex situations, and in particular to real liquids of
interest such as water. Additionally, exploring the con-
nection between the rather simple free volume model and
alternative microscopic descriptions such as excess entropy
scaling [32–36] could provide additional insights on the
emergence of a simple Arrhenius behavior without the need
for activated processes. Finally, rationalizing the deviations
from the Arrhenius behavior typical of fragile supercooled
liquids [37–39], where thermal energy can become lower
than activation energies, could require going one step
further and combining both free volume and activation
models [40].
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