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We investigate the arrested spreading of room temperature droplets impacting flat ice. The use of an icy
substrate eliminates the nucleation energy barrier, such that a freeze front can initiate as soon as the droplet’s
temperature cools down to 0 °C. We employ scaling analysis to rationalize distinct regimes of arrested
hydrodynamics. For gently deposited droplets, capillary-inertial spreading is halted at the onset of contact
line freezing, yielding a 1=7 scaling law for the arrested diameter. At low impact velocities (We≲ 100),
inertial effects result in a 1=2 scaling law. At higher impact velocities (We > 100), inertio-viscous spreading
can spill over the frozen base of the droplet until its velocity matches that of a kinetic freeze front caused by
local undercooling, resulting in a 1=5 scaling law.
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The spreading of a droplet’s three-phase contact line
after contacting a dry surface exhibits rich and complex
dynamics [1,2]. Multiple scaling laws have been discovered
that capture the various regimes of contact line spreading
[3]. Early-time spreading is capillary-inertial with the
diameter following a 1=2 power law with respect to time
[4,5], where capillarity rapidly drives spreading due to the
sharp curvature about the contact line, while the inertia of
the droplet resists deformation [6]. Late-time spreading is
visco-capillary in nature; the droplet assumes a spherical-
cap shape and the spreading dynamics are governed by
viscous effects near the contact line until reaching an
equilibrium contact angle [7]. For a droplet gently depos-
ited onto a fully wetting surface, this late-time spreading
follows a 1=10 power law known as Tanner’s Law [8,9]. At
high impact speeds, the hydrodynamics governing the
maximal spreading diameter (after which retraction may
occur) is a rich combination of inertia, surface tension, and
viscous dissipation [10].
When the spreading droplet is on a chilled substrate,

one has to also consider its heat transfer with the substrate
and the resulting onset and propagation of freezing. The
influence of solidification on droplet spreading was ini-
tially studied in the context of molten metal droplets
impacting a solid substrate [11,12]. With respect to
freezing an impacting water droplet, most research utilized
a chilled substrate that was dry (i.e., no preexisting frost or
ice) [13,14]. When the chilled substrate temperature was
above −40 °C, freezing did not occur upon water droplet
impact due to the energy barrier inherent to nucleating an
ice embryo [15]. Chilled substrates that are nonwetting can
exploit this energy barrier by rebounding and/or sliding
supercooled droplets away before ice nucleation can occur

[16,17]. For substrates chilled beneath −40 °C, water
droplet freezing can occur immediately and dramatically,
resulting in surprising effects such as spontaneous delami-
nation [18]. The nucleation energy barrier can be removed
entirely by choosing a solid substrate of the same material
as the droplet. For example, a water droplet impacting a
sheet of ice, which was recently reported but these works
were primarily empirical [19,20]. A follow-up study
modeled the thickness of the solidified lamella but not
the spreading dynamics [15].
Multiple theories have been developed to rationalize the

maximal diameter of a droplet spreading on a chilled
substrate, where solidification arrests the advancing contact
line [21,22]. Schiaffino and Sonin studied the impact of
molten wax on a solid wax substrate and proposed that the
advancing contact line became arrested once the contact
angle of the solidification front matched that of the droplet
[23,24]. Chandra and co-workers characterized the solidi-
fication of molten metals and wax droplets on room
temperature substrates [25,26]. Tavakoli et al. studied
the spreading of an alkane droplet on glass, finding that
solidification began at the contact line with arrest occurring
after a critical volume within the contact line was solidified
[27]. Ruiter et al. studied hexadecane droplets impacting
cold copper and glass substrates, suggesting that the
spreading becomes arrested after the contact line reaches
a critical supercooled temperature where nonequilibrium
freezing can occur [28]. None of these models consider the
most natural scenario: water droplets impacting an icy
surface.
In this Letter, we develop scaling laws that capture the

spreading rate and arrest diameter of water droplets
impacting a flat ice sheet. For droplets impacting at low
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Weber numbers, the spreading is capillary-inertial and
becomes arrested when the droplet cools down to 0 °C. At
high Weber number impacts, the hydrodynamic spreading
quickly transitions from the 1=2 capillary-inertial power
law to a 1=6 inertio-viscous one with increasing Weber
number. The inertial spreading enables local supercooling
despite the lack of a nucleation energy barrier, such that
arrest occurs once the speed of the nonequilibrium freeze
front matches that of the contact line.
Figure 1 depicts the high-speed imaging of water droplets

impacting a smooth ice substrate at various Weber numbers:
We ¼ ρD0U2=γ, where ρ is the density of water, D0 is the
preimpact droplet diameter, U is the impact velocity,
and γ is surface tension. The water droplets were room
temperature prior to impact, whereas the ice substrate was
varied from Ts ¼ −30 °C to −10 °C, see Sec. 2 in the
Supplemental Material [29] for more details on the exper-
imental setup. When the water droplet was gently deposited
(We ≈ 0) or released from a small height (We ≈ 5), the
droplet spreading was due to surface tension. The freezing-
induced arrest of hydrodynamic spreading (last frame of
each row) occurred at t ≈ 18 ms for the We ≈ 0 case, but at
only t ≈ 15 ms for We ≈ 5. Despite the faster arrest time for
the latter case, the arrested contact diameter (warrest) was
actually slightly larger due to inertia boosting the capillary
spreading. For droplets impacting at We ≈ 500, inertia
causes a rapid spreading but the droplet’s hydrodynamic
spreading is still curtailed by freezing-induced arrest. In
other words, an equivalent droplet impact on a nonfreezing
surface would have spread to a larger diameter (followed in
some cases by an inertial retraction). The arrest time was
only t ≈ 3.5 ms, but warrest was nonetheless the largest of the
three cases due to the inertial spreading. See Fig. S1 in the
Supplemental Material [29] to compare droplet impact on
ice to that on dry hydrophilic or superhydrophobic surfaces.

Prior to arrest, spreading follows the well-known
capillary-inertial scaling law for a gently deposited
droplet (U ≈ 0 m=s) [4,5],

wðtÞ ∼ β1

�
γH
ρ

�
1=4

t1=2; ð1Þ

where H is the averaged height of the spreading droplet
and H ∼ ðD0Þ3=w2 by conservation of mass. Spreading
follows an inertial scaling law for droplets impacting the
icy substrate (U > 0 m=s) [30],

wðtÞ ∼ β2ðUD0tÞ1=2; ð2Þ
where β1 and β2 are numerical prefactors, and t is the time
from impact. The best-fit values are β1 ≈ 0.5, β2 ≈ 10.21 for
We ≈ 5, and β2 ≈ 5.78 for We ≈ 100. While bottom-up
imaging is helpful to fully capture early-time droplet
spreading [31], this was not possible with our setup and
we clearly observed the 1=2 law nonetheless (Fig. S2).
While these 1=2 spreading laws were originally reported for
isothermal conditions, a recent study of hexadecane droplets
spreading on a dry, chilled substrate independently validated
that they can extend to nonisothermal systems [28]. The
slightly slower spreading rates at colder ice temperatures is
due to the temperature-dependent increase in viscosity [17].
Here, this effect is secondary, as the use of a preiced
substrate causes arrest to occur before the droplet could
become supercooled. Technically, spreading always initiates
in the inertially limited viscous regime [32,33], but for water
the transition to the 1=2 laws is faster than the temporal
resolution of the high-speed camera. The late-time transition
to Tanner’s 1=10 power law or partially wetting state was
not observed due to the onset of freezing and contact line
arrest. See Fig. S3 [29] for the evolution in contact angle
during spreading.
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FIG. 1. (a) Schematic of the experimental setup, where room temperature droplets impact a chilled ice substrate. (b) High-speed
microscopy of droplet impact and spreading on an ice sheet chilled at Ts ¼ −20 °C. For gentle deposition (We ≈ 0) or impact at
relatively low Weber numbers (We ≤ 100), capillary-inertial spreading became arrested due to the onset of freezing (last frame). When
We > 100, inertio-viscous spreading is now what becomes arrested.

PHYSICAL REVIEW LETTERS 129, 074502 (2022)

074502-2



Regarding arrest, we hypothesize that the contact line is
halted as soon as the droplet’s bulk temperature cools down
from room temperature to the freezing point (0 °C). This is
supported by Fig. S4(a) in the Supplemental Material [29],
wherewarrest decreases with decreasing substrate temperature
(Ts), but increases with volume for negligible impact height.
The cooling timescale is a balance between the droplet’s
sensible heat and conduction into the chilled ice,

tcooling ∼
�
Tl − Tf

Tl − Ts

�
H2

αl
; ð3Þ

where Tl − Tf is the differential between the initial liquid
temperature and freezing temperature (i.e., sensible cool-
ing required to initiate freezing), Tl − Ts is the initial
temperature differential between the droplet and ice that
drives the conductive heat transfer, and αl is the thermal
diffusivity of the liquid. Plugging tcooling into Eq. (1)
allows for the solution of wðtcoolingÞ ∼ warrest. Invoking
conservation of mass enablesH to be substituted out of the
equation. Solving for the nondimensional arrest diameter
yields

warrest

D0

∼ β3

�
Tl − Tf

Tl − Ts

�
1=7

�
Pr
Oh

�
1=7

; ð4Þ

where β3 is a geometric prefactor that accounts for the
crude approximation of a uniform droplet thickness used to
derive Eqs. (3) and (4) , Pr¼ ν=αl is the Prandtl number
(where ν ¼ μ=ρ and μ are the kinematic and dynamic
viscosities of water), and Oh ¼ μ=

ffiffiffiffiffiffiffiffiffiffiffi
ργD0

p
is the

Ohnesorge number. Figure 2 shows that the 1=7 power
law from Eq. (4) collapses all of the experimental data over
a wide range of volumes; this can alternately be expressed
as a 5=14 power law with respect to volume [Fig. S4(b)].
Curiously, this scaling also worked for hexadecane

droplets gently deposited on ice [Fig. S4(b)], despite

the chemical mismatch invalidating the model’s neglect
of a nucleation energy barrier. We attribute this to hex-
adecane’s high freezing temperature (18 °C) and low surface
tension compared to water, which renders the nucleation
energy barrier as approximately negligible. This hypothesis
was confirmed by reproducing the 1=7 power law for
hexadecane droplets deposited on frozen hexadecane, albeit
with more scatter due to the crumpling of the solidifying
droplet (Fig. S5 [29]).
For moderate droplet impacts (5 < We < 100, impact

height of 1, 2.5, 5, or 10 cm), Eq. (3) would be substituted
into Eq. (2) instead of Eq. (1) to account for the inertia of
the impacting droplet. The resulting nondimensional arrest
diameter now scales as

warrest

D0

∼ β4

�
H
D0

��
Tl − Tf

Tl − Ts

�
1=2

ðPr ReÞ1=2; ð5Þ

where β4 is the geometric prefactor and Re ¼ ρUD0=μ is
the Reynolds number. The relationship between H and D0

for high Reynolds numbers (> 1500 for our case) and
Weber numbers is given by H=D0 ≈ η=ðτ þ t̄Þ2 for droplet
impacts on dry surfaces [34,35]. Here, η ¼ 0.39 and τ ¼
0.25 are empirical constants, whereas t̄ ¼ tU=D0 repre-
sents the nondimensional timescale and t is the experi-
mental spreading time. Prior to arrest, the impact dynamics
on ice follow the same spreading dynamics as that of dry
surfaces for moderate impact heights (Fig. S2). Thus, using
this relation to our advantage, we obtain values ranging
from H=D0 ¼ 0.075 to 0.11. This weak variation is due to
capillarity still playing a role for moderate impacts,
enabling H=D0 to get absorbed into the best-fit numerical
prefactor [i.e., β4ðH=D0Þ]. Figure 2(b) demonstrates that
Eq. (2) collapses all moderate impact data onto a single
curve, validating the ðPr ReÞ1=2 power law. For our experi-
ments, H=D0 ≈ 0.09–0.3.
For higher inertial droplet impacts (We > 100, impact

heights ≥ 20 cm), the measured spreading rate suddenly
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FIG. 2. Nondimensional arrested droplet diameter (warrest) as a function of nondimensional thermophysical properties of water.
(a) Droplets gently deposited on ice follow a 1=7 power law [Eq. (4) with β3 ≈ 0.65]. (b) Droplets impacting at moderate We numbers
follow a 1=2 power law [Eq. (5), where β4ðh=D0Þ ≈ 0.03].

PHYSICAL REVIEW LETTERS 129, 074502 (2022)

074502-3



diverted from the expected power law slope of 1=2 down to
1=6. This transition occurred approximately 2 ms after
impact and lasted until arrest occurred around tarrest ≈ 5 ms
(Fig. 3). We hypothesize that, for highly inertial droplet
impacts, the 1=6 regime indicates that the droplet can
continue to spread even after its base has frozen. This
can be conceptualized as an inertio-viscous regime, where
thin-film spillage over the icy base is driven by inertia and
resisted by viscous dissipation.
The power law for inertio-viscous spreading is a balance

of inertial and viscous stresses: ρU2 ∼ μðu=HÞ2t, where u
andH are the radial fluid velocity and height of the inertially
flattening droplet, respectively. For highly inertial impacts,
we assume the viscous effects extend across the entire height
of the flattened droplet, such that they matter everywhere.
We further assume that the effective radial velocity of the
droplet scales with the speed of the advancing contact line:
u ∼ w=t. Finally, incorporating mass conservation, we
obtain an expression for the evolving contact diameter,

wðtÞ ∼ β5Re1=6ðUD5
0Þ1=6t1=6; ð6Þ

where β5 is a numerical prefactor. Plotting Eq. (6) in Fig. 3,
there is an excellent match to the experimental spreading
rate over a time range of about 2≲ t≲ 5 ms. The theoretical
time where the 1=2 power law [Eq. (2)] transitions to this
1=6 power law scales as t ∼U−1D0Re1=2, which Fig. 3
shows is also in agreement with the experimental transition
(i.e., the theoretical lines intersect where the data suddenly
shift in slope). This seemingly validates our hypothesis of

an intermediate inertio-viscous spreading regime before the
droplet gets arrested. The 1=6 scaling also agreed with the
results for hexadecane droplets impacting on ice (Fig. S6).
While scaling laws of nearly any slope can be misleadingly
best fit to transitions between regimes [36], we note that our
1=6 regime exhibits a nearly constant slope across an
appreciable timescale of about 3 ms for multiple liquids.
This suggests that the inertio-viscous regime is physical and
not a mere crossover between regimes, especially given its
derivation from first principles. By plotting the instanta-
neous power law versus time, it was confirmed that stable
1=2 and 1=6 laws occurred for inertial droplet spreading on
ice, whereas spreading on room temperature copper only
exhibited a stable 1=2 law (Fig. S7 [29]).
The arrest dynamics for an inertially spreading droplet

were distinct from that of the droplets gently spreading by
capillarity. For example, the vanishing thickness (H → 0)
of an inertially flattening droplet means that tcooling → 0

[Eq. (3)]. Given that the droplet can cool down to a freezing
temperature almost immediately, one could naively assume
that arrest would occur right away. However, the inertia of
the overlying bulk liquid allows for spillage over the frozen
contact line, such that warrest is much larger than what is
predicted by the 1=7 [Eq. (4)] or 1=2 [Eq. (5)] power laws.
We propose that the vanishing thermal resistance of the
droplet flattening over the chilled ice, combined with its
rapid rate of spreading, results in localized undercooling
near the droplet’s contact line, despite the lack of a
nucleation energy barrier. In other words, the contact line
spreads so quickly that it cannot nucleate ice immediately
upon reaching 0 °C, enabling localized undercooling that
then results in nonequilibrium solidification (Fig. S8). This
may also explain why the inertia of the pancaking droplet is
being resisted by viscous effects rather than by capillarity,
both in terms of the increased viscosity of the chilled water
and the frozen base inhibiting capillary retraction.
Whereas equilibrium solidification is slow and rate

limited by heat transfer (i.e., Stefan problem), nonequili-
brium solidification is kinetic in nature. The freeze front
velocity, termed the kinetic crystal growth velocity, is
related to the extent of undercooling [37,38],

vf ¼ κΔTb; ð7Þ

where κ is the kinetic coefficient, ΔT ¼ Tf − Tl is the
extent of liquid undercooling, and b is a nondimensional
exponent. The physics of kinetic freezing are complex, such
that the numerical values for κ and b are typically chosen to
match Eq. (7) with empirical measurements or molecular
dynamics simulations [28]. For molten metals, the kinetic
coefficient ranged from κ ¼ 0.1 to 1 × 10−3 ms−1K−1,
whereas the b term was not considered (i.e., b ¼ 1)
[28,39,40]. For water impacting a dry, chilled substrate,
κ ¼ 2.8 × 10−3 ms−1K−1.8 and b ¼ 1.8 [37,41].

FIG. 3. Evolving spreading radius of water droplets impacting
an ice substrate at high Weber numbers (We > 100). Dashed
black lines correspond to the 1=2 capillary-inertial spreading law
[Eq. (2)], with best-fit values of β2 ≈ 4.8, 3.7, and 2.65 for
We ¼ 200, 500, and 1000, respectively. Dashed red lines
correspond to the 1=6 inertio-viscous scaling [Eq. (6)], with
β5 ≈ 12.82, 5.97, and 0.74 for We ¼ 200, 500, and 1000,
respectively. The subsequent onset of zero slope indicates hydro-
dynamic arrest.
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Our arrest model for inertial droplet impacts simply
balances the spreading velocity with the kinetic velocity of
the nonequilibrium freeze front. The inertio-viscous
spreading velocity is obtained by solving Eq. (6) for
the contact line velocity: vcl ∼ w=t, resulting in
vcl ∼ ReUðD0=wÞ5. Assuming that droplet spreading gets
arrested once the kinetic freezing front speed matches that
of the contact line [12,28], we obtain the nondimensional
arrested diameter

warrest

D0

∼ β5

��
U
κ

�
1

ðTf − TlÞb
�
1=5

Re1=5: ð8Þ

Interestingly, the maximal inertial spreading of a viscous
drop (in the absence of freezing) also scales with Re1=5

[42], with our freezing-induced arrest model additionally
exhibiting an inverse relation to the kinetic coefficient of
undercooling and the temperature differential. Plotting all
experimental data in Fig. 4, Eq. (8) successfully predicts
warrest when using κ ¼ 2.8 × 10−3 ms−1K−2 and b ¼ 2,
when assuming that the local undercooling approaches
the same temperature as the ice substrate (Tl ≈ Ts).
It is remarkable that these singular fitting values agreed
with the data over a wide range of Weber numbers
(1 < We < 1000) and for both water (Fig. 4) and hex-
adecane droplets (Fig. S9 [29]). Droplets that exhibited
minor splashing upon impact deviated slightly from the
model, presumably due to the model not accounting for the
loss in volume. Interestingly, even gently deposited drop-
lets spreading in the capillary regime exhibited a reason-
able fit with Eq. (8) in Fig. 4. This is likely coincidental, as
capillary spreading and its conductive cooling rate are
much slower, making it unlikely that substantial under-
cooling could occur on an icy substrate. Alternatively, if

local undercooling is still occurring to some extent, it is
possible that both arrest mechanisms [Eqs. (4) and (8)] are
occurring simultaneously at roughly the same timescale.
In summary, the hydrodynamic spreading of droplets on

a chilled ice substrate becomes arrested by freezing. Prior
to freezing onset, spreading followed the well-known 1=2
power law. For high Weber number impacts, spreading
continued even after freezing with a 1=6 power law, due to
inertio-viscous spillage over the droplet’s icy base.
Spreading arrest occurred when the bulk droplet cooled
down to 0 °C for low Weber number impacts and when a
local nonequilibrium freeze front matched the spillage
velocity for high Weber number impacts. These findings
indicate that, in the absence of an appreciable nucleation
energy barrier, the dynamics of droplet impact and
spreading are profoundly disrupted by disparate freezing
phenomena, which in turn depend on the initial flow
conditions.
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Correction: Equation (1) contained an error that also
required modifications to text between Eqs. (3) and (4), and
a minor mistake was detected in the phrase before Eq. (6).
These errors have been set right. In addition, two mistakes
regarding proof change requests were made by the pro-
duction staff. (1) In the fifth paragraph, the symbol for the
quantity for the density of water was misset. (2) In the
seventh paragraph, first sentence, the production team
removed the wrong phrase. These errors have also been
set right.
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