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An experimental verification of an exceptional point (EP) in a stand-alone chaotic microcavity is a tough
issue because as deformation parameters are fixed the traditional frequency analysis methods cannot be
applied any more. Through numerical investigations with an asymmetric Reuleaux triangle microcavity
(ARTM), we find that the eigenvalue difference of paired modes can approach near-zero regardless of
nonorthogonality of the modes. In this case, for a definite verification of EPs in experiments, wave function
coalescence should be confirmed. For this, we suggest the method of exploiting correlation of far-field
patterns (FFPs), which is directly related to spatial mode patterns. In an ARTM, we demonstrate that the
FFP correlation of paired modes can be used to confirm wave function coalescence when an eigenvalue
difference approaches near zero.
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Non-Hermitian degeneracy, namely, an exceptional point
(EP) [1], has attracted much attention in open quantum
(wave) systems because of its rich and interesting physical
properties. An EP is closely related to intriguing phenom-
ena like a mode transition on Riemann surfaces [2–4],
nonconservative mode couplings [5,6], chiral mode for-
mation [7], and nonorthogonal eigenfunctions [8,9]. So far,
an EP has been found in diverse fields of science and
technology such as atoms [10], lasers [11,12], optics [3,13–
15], acoustics [16,17], and electronic circuits [18,19].
Particularly, an EP formation in optical microcavities has
been studied in various platforms [20]: gain-loss modes
[21,22], modes in coupled resonators [23–25], even-odd
modes [7,26], internal-external modes [27], modes in
concentric layered resonators [28], and resonance-assisted
tunnelings [29]. Recent studies revealed that an EP-based
sensor is a prospective candidate for ultra-high-resolution
sensors [30]. Several successful implementations of
EP-based sensors were reported in nanoparticle detection
[31–34] and gyroscopes [35–38]. Most recently, it was also
reported that an EP plays a crucial role in achieving
coherent perfect absorption [39].
By definition, an EP is the parametric point at which

(i) eigenvalues, as well as corresponding (ii) eigenvectors,
coalesce simultaneously. Hence, one can confirm EPs only
when the two conditions (i) and (ii) are fulfilled. However,
thus far, EPs have been only approached indirectly through
a frequency analysis: through tracking a branch cut by
observing avoided resonance crossings in parameter space.
This technique has been generally accepted in experiments
when system parameters are controllable [7,12,13,26,40–
46], yet, it is not applicable in stand-alone microcavities,
where deformation parameters are fixed once a fabrication
process is completed.

Meanwhile, it is well known that far-field patterns
(FFPs) in generic chaotic microcavities are not isotropic.
More notably, if a cavity does not preserve geometric
symmetry at all, the modes in the cavity and their FFPs
become chiral because of unbalancing between clockwise
(CW) and counterclockwise (CCW) components of the
coupled modes. We focus on the so-called chiral EP formed
by this type of coupling [7,26] in an asymmetric Reuleaux
triangle microcavity (ARTM) [47].
In this Letter, we numerically and analytically demon-

strate that FFP correlations can be a decisive measure for
confirming eigenfunction coalescence for chiral EPs. We
first show that many mode pairs do not coalesce even when
their eigenvalues are almost identical because of other
nearby mode coupling contributions. In verification, we
investigate the interrelation among nonorthogonalities, FFP
correlations, and eigenvalue differences of period-5 paired
modes as a function of the refractive index, which is a
uniquely accessible parameter in experiments and is
achieved by temperature control. Second, we demonstrate
the general relation between mode coalescence and FFPs
by numerically obtaining a large number of modes and
analytically deriving a fitting relation between them.
The ARTM consists of six different circular arcs [47].

Each vertex of a triangle has two circular arcs with different
radii, and an arc is tangentially connected to two neighbor-
ing arcs for C1 continuity. For a constant radius r0, five
radii rj, j ¼ 1; 2…5, are given as follows:

rj
r0

¼ 1þ ϵ

�
β1 þ

β2 sinϕ1 þ β3 sinϕ2

sinðϕ1 þ ϕ2Þ
�
;

where the coefficients ðβ1; β2; β3Þ for fr1; r2; r3; r4; r5g
are fð1; 0; 0Þ; ð1;−1; 0Þ; ð1;−1; 1Þ; ð0;−1; 1Þ; ð0; 0; 1Þg.

PHYSICAL REVIEW LETTERS 129, 074101 (2022)

0031-9007=22=129(7)=074101(6) 074101-1 © 2022 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.074101&domain=pdf&date_stamp=2022-08-12
https://doi.org/10.1103/PhysRevLett.129.074101
https://doi.org/10.1103/PhysRevLett.129.074101
https://doi.org/10.1103/PhysRevLett.129.074101
https://doi.org/10.1103/PhysRevLett.129.074101


Here, ϵ is the deformation parameter, and ϕ1 and ϕ2 are the
angle at the two vertices. We set ϵ ¼ 9.2, ϕ1 ¼ 0.11π, and
ϕ2 ¼ π=2. Please see Ref. [47] for more details.
We obtain fifteen pairs of optical modes localized on a

period-5 classical orbit by employing the boundary element
method (BEM) [48]. Assuming time-harmonic fields
(e−iωt, ω ¼ ck, c: speed of light, i ¼ ffiffiffiffiffiffi

−1
p

), the optical
modes computed are the solutions of the Helmholtz
equation, −∇2ψ ¼ n2k2ψ , obeying the boundary condition
of the transverse electric (TE)-polarized modes at the cavity
boundary. Under the Sommerfeld radiation condition [49],
the modes are decaying states described by complex-valued
wave numbers k ∈ C. n is the refractive index set to 1 for
the outside of the cavity, while it varies around 3.3 inside
the cavity. We use a dimensionless wave number kR with
an average radius R of ARTM. To obtain FFPs, we compute
jψðr⃗Þj using BEM at jrj ¼ 50R, where the angular dis-
tribution does not change effectively.
Figure 1(a) exemplifies one of the fifteen pairs of modes.

The CW emissions are marked by f1 (−15°) and f3 (75°)
while CCWemissions by f2 (25°) and f4 (−75°). The broad
backward emission in the range [90°, 270°] shows mixed
directions. We compare the chiralities of the modes
deduced from the Husimi functions [50] (αH) and FFPs
(αF), defined as follows:

αH≡1−
minðRp<0Hðq;pÞdqdp;Rp>0Hðq;pÞdqdpÞ
maxðRp<0Hðq;pÞdqdp;Rp>0Hðq;pÞdqdpÞ; ð1Þ

αF ≡ 1 −
min ðRCCW Idθ;

R
CW IdθÞ

max ðRCCW Idθ;
R
CW IdθÞ : ð2Þ

Here, Hðq; pÞ is the Husimi function obtained in the
Birkhoff phase space ðq; pÞ [51], where q is the arc length
and p ¼ sin χ the momentum for the incident angle χ of
ray. Hðq; pÞ in p > 0 and p < 0, respectively, implies the
CCW and the CW components of modes. In Eq. (2), θ
denotes the emission angle for which 5° < θ < 60° and
270° < θ < 300° correspond to the CCW emission, and
60° < θ < 90° and 300° < θ < 365° to the CW emission,
according to Fig. 1(b).
Figure 1(c) shows chiralities versus ReðkRÞ of the fifteen

pairs of modes in 117.92 < ReðkRÞ < 122.48 for n ¼ 3.3.
Note that the twomodes in each pair are nearly degenerated,
as jReðΔkRÞj ≲ 10−4. The equidistant mode spacing,
jReðΔkRÞj ∼ 0.3246, between the adjacent pairs is ascribed
to localization on the period-5 classical orbit. Clearly,we can
identify the mutual similarity between αH and αF in
Fig. 1(c). Note that the (−) sign of αH and αF are set when
the denominators are the integral of p < 0 or CW ones.
Next, the pairwise split jΔkRj in complex plane is

obtained for 3.299 < ne < 3.3 in Fig. 2(a). We select five
pairs (A to E in Fig. 1) to discuss. Particularly, we focus on
the six dips (I to VI), where jΔkRj≲ 10−5. At the dips, the
wave function coalescence is also quantified by computing
a pairwise overlap S given as follows:

S≡ j RΩc
ψ�
aðr⃗Þψbðr⃗Þdr⃗jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

Ωc
jψaðr⃗Þj2dr⃗

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Ωc

jψbðr⃗Þj2dr⃗
q ; ð3Þ

where ψa and ψb are the modes in the same pair, and the
integral domain r⃗ ∈ Ωc is the inside of the cavity. As we
can see in Fig. 2(b), S is classified into two groups;
fG1∶ðI; IV;VÞ; S → 1g or fG2∶ðII; III;VIÞ; S=→1g. The

FIG. 1. (a) Wave function of mode (kR ¼ 121.8254−
i7.2056 × 10−4) localized on the period-5 classical orbit.
(b) FFP of the mode. The inset is FFP in the polar coordinate.
The emission robes ff2; f4g (ff1; f3g) correspond to the CW
(CCW) direction. (c) The chiralities versus ReðkRÞ of fifteen
pairs of modes localized on the period-5 classical orbit.

FIG. 2. Relations among (a) jΔkRj, (b) the overlap S, and
(c) the far-field intensity correlation σF for modes obtained in
3.299 ≤ n ≤ 3.3. (a) Six dips of jΔkRj of selected five modes (A,
B, C, D, E) in Fig. 1(c) are, respectively, marked by symbols (red
circle, green triangle, black diamond, blue square, and inverted
orange triangle). Corresponding peak values of S and σF are
marked by the same symbols as well.
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most peculiar finding here is that jΔkRj and S does not hold
a strict correlation. For example, comparing V and VI, we
can see that jΔkRjðVÞ≫jΔkRjðVIÞ, but, that SðVÞ > SðVIÞ.
This result implies that the paired modes are “not” always
collinear even when jΔkRj ≪ 1, and we should examine S
to confirm EPs transparently.
The observed discrepancy between S and jΔkRj arises

from other mode coupling disturbances: even when certain
coupled modes are in the vicinity of their EP, if other extra
modes coexist in a narrow parameter range, two-modes
approximation breaks down. Then, the influence of the
extra mode cannot be ignored unless we further get closer
to the targeted EP in the parameter space. We demonstrate
this fact by exemplifying the two cases of IVand VI shown
in Fig. 2.
We consider first the case where the two-mode approxi-

mation is valid. The upper and the lower panel in Fig. 3(a)
shows the weak-coupled (real-cross and imaginary-repul-
sion) ReðnkRÞ and ImðnkRÞ of modes corresponding to IV
in Fig. 2. (Here, n is multiplied to kR to compensate the
parameter variation of n.) As this pair shows S → 1, the
spatial distributions of the modes are almost identical as
shown in the upper and the lower panel in Fig 3(b). At the
same time, their Hðq; pÞ, exhibiting a strong localization
on the CW (αH ≈ −0.986) period-5 periodic orbit, are
also almost identical as shown in the upper and the lower
panel in Fig. 3(c). Consequently FFPs are also identical

[Fig. 3(d)] and result in a large jσFj [IVin Fig. 2]. In Figs. 3(c)
and 3(g), the faint spots around the dotted line (the critical
line for total-internal reflection) in Hðq; pÞ are emission
routes [52].
In contrast, when other extra modes couplings get

involved, things change drastically. Figure 3(e) shows
nkR corresponding to VI in Fig. 2. Here, we can find that
the dispersion of the n-dependent trajectory of nkR is fairly
distorted (see the dashed ellipse) in comparison to the
above two-mode case. This distortion is caused by extra
coupling between another additional mode and one of
the paired modes. Because of this phenomenon known as
Fermi resonance [53–56], when one of the paired modes is
coupled with another mode, the spatial distribution of the
mode is sure to be deformed. Thereby, the broken two-
mode approximation induces nonidentical wave functions,
even if jΔkRj approaches near zero, as we can confirm in
Fig. 3(f). Accordingly, all other quantities associated with
EP become nonidentical either, as we can see Hðq; pÞ and
FFPs in Figs. 3(g) and 3(h) (also S and αH in Fig. 2).
As observed above, measuring jΔkRj is not enough to

verify EPs because we are strictly unable to reach the exact
parameter values in realistic experiments. Only approxi-
mately closer parameters are available under the exper-
imentally allowed tolerance. Hence, to confirm EPs,
examining wave function coalescence is crucial in princi-
ple. However, confirming wave function coalescence is still

FIG. 3. (a), (e) Avoided resonance crossings of nkR as a function of n around IVand VI in Fig. 2. (b), (f) Wave function intensity in the
log scale; (c), (g) Husimi functions; and (d), (h) FFPs of modes at IV and VI. In (a) and (e), nkRs are shifted as the amount of κ (∈ C;
mean nkR of the paired modes at IVand VI; dashed vertical line). In (b), (c), (d), (f), (g), and (h), the upper (lower) panels correspond to
the mode having a higher (lower) ImðnkRÞ crossing the dashed vertical line in (a) and (e).
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a challenging open problem, because the only available
quantity is FFPs: namely, the quantity is ∝ jψ j ∈ R, not
ψ ∈ C. Nevertheless, we can achieve this goal by utilizing
the intensity cross correlation (σF) of FFPs. σF is defined as
follows:

σF ≡
R
∂Ω∞

jψaðθÞjjψbðθÞjdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
∂Ω∞

jψaðθÞj2dθ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

Ω∞
jψbðθÞj2dθ

q ; ð4Þ

where the integral domain θ ∈ ½0 ≤ ∂Ω∞ < 2π� is a large
distant measuring angle for FFPs. Note that the above
intensity correlation is employed in a similar context [57].
As is shown in Fig. 2(c), the highest three values of σF
coincide with those of S and belong to G1. On the other
hand, the lower three values of S show the lower σF and
belong to G2. Therefore, we can preliminarily conjecture
that FFPs can be a precursor of wave function coalescence
in actual experiments.
Now, we substantiate this conjecture by demonstrating

that the far-field emission pattern can indeed be an indicator
of wave function coalescence. We begin by constructing an
effective 2 × 2 non-Hermitian Hamiltonian [8,9] given in
terms of CW and CCW basis modes, as follows:

H ¼
�
E0 0

0 E0

�
þ
�

Γ Veiδ

ηVe−iδ Γ

�
; ð5Þ

where the diagonal elements E0 ∈ C in the first matrix
stand for the degenerated basis modes (∝ e�imθ=

ffiffiffiffiffiffi
2π

p
,

m ∈ Z) in the circular cavity. The second matrix describes
a perturbation inducing an asymmetric back scattering: V ∈
R is the coupling strength and 0 ≤ η ≤ 1 the real-valued
asymmetricity of the couplings. δ ∈ R is the phase of
the complex-valued coupling. When η → 0, Eq. (5) turns
into the generic Jordan form [58] that results in EPs.
The eigenvalues of the Hamiltonian in Eq. (5) are
E� ¼ E0 þ Γ� ffiffiffi

η
p

V, and the right eigenvectors are,

v⃗� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p ð1;� ffiffiffi
η

p
e−iδÞT; ð6Þ

where we normalize the vectors to fulfill jv⃗�j2 ¼ 1. Note
that a different normalization factor 1=

ffiffiffi
2

p
should be set [8]

when we strictly use the normalization pairing of left-right
eigenvectors for a non-Hermitian matrix.
To establish an explicit interconnection among the wave

overlap (S), the chirality (α ¼ 1 − η) and the far-field
intensity correlation (σF), we first obtain a large number
of modes in 115 ≤ kR ≤ 125: more than 7000 modes are
obtained, as shown in Fig. 4(a). The relation between the
overlap and the chirality reads

S ¼ jv⃗�þ · v⃗−j ¼
1 − η

1þ η
⇔ α ¼ 2S

1þ S
: ð7Þ

In Fig. 4(b), we plot S-α interrelation for the modes
obtained in Fig. 4(a). The analytical prediction of
Eq. (7) is overlaid as solid curves. Note that the sign
þð−Þ in α is added for the CW (CCW) chirality of modes.
We now construct a relation between the far-field wave

overlap S ¼ j R ψ�þψ−dθj and the intensity correlation
σF ¼ R jψþjjψ−jdθ. Given the explicit expressions of
normalized wave functions,

ψ� ¼ 1ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p ðeimθ � ffiffiffi
η

p
e−iδe−imθÞ; ð8Þ

we can obtain,

σF ¼
Z

π

−π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ�þψþ

p ffiffiffiffiffiffiffiffiffiffiffiffi
ψ�
−ψ−

p
dθ

¼ 1

2π

1

1þ η

Z
π

−π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2 − 2η cos½2ðδþ 2mθÞ�

q
dθ

¼ 1

2π

1 − η

1þ η

Z
π

−π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½4η=ð1 − ηÞ2�sin2ðδþ 2mθÞ

q
dθ

¼ S
4mπ

½Eðδþ 2mπ; 1 − S−2Þ − Eðδ − 2mπ; 1 − S−2Þ�

≈ 1þ S − 1

2
þO½ðS − 1Þ2�; for S → 1; ð9Þ

where Eðϕ; ξÞ ¼ R ϕ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2 sin2 θ

p
dθ is the incomplete

elliptic integral of the second kind. In obtaining the
expansion at the last line in Eq. (9), we utilized the
commercial tool; Mathematica. With this, we now have
the explicit relation S ¼ 2σF − 1 in a closed form.
Interestingly, it is found that the overlap S is equivalent
to the multiplication of the chirality and the intensity
correlation, as follows:

S ¼ 2σF − 1 ⇔ S ¼ ασF: ð10Þ

Figure 5(b) shows that in the vicinity of EPs, i.e., S > 0.8,
the analytic curve of Eq. (10) is well matched to the

FIG. 4. (a) Wave numbers kR ∈ C of modes in ARTM. The
inset enlarges one of the nearly degenerated paired modes.
(b) The chirality α as a function of the wave overlap S in
Eq. (7). (c) Histogram of modes having a large S (> 0.8; dashed
line) that reveals CW (α < 0)-dominant chirality.
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numerically obtained ðS; σFÞ distributions. Note that,
employing Eq. (8), we can readily prove the relation S ¼
j R π

−π ψ
�þψ−dθj ¼ ð1 − ηÞ=ð1þ ηÞ in Eq. (7) as well.

In real experiments with stand-alone asymmetric micro-
cavities and lasers, we can easily discriminate a small
eigenvalue difference by using an optical heterodyne
detection [59]. The beating frequency and linewidth of a
mode for a probe beam correspond to the real and the
imaginary eigenvalue, respectively. At the same time, FFPs
can be obtained by measuring the intensities as a function
of angle. Then, we can confirm wave function coalescence
by exploiting FFPs.
To summarize, we find that the eigenvalue difference of

paired modes can approach near zero regardless of the
nonorthogonality of modes in an ARTM. For effective
confirmation of wave function coalescence of chiral EPs,
we propose utilizing the FFP correlation in stand-alone
asymmetric microcavities. Because high-resolution exper-
imental measurement of FFPs is feasible, we believe our
findings significantly contribute to an unambiguous exper-
imental verification of chiral EPs for their practical appli-
cation to highly sensitive sensors.
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