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Massive Quarks at One Loop in the Dipole Picture of Deep Inelastic Scattering
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We calculate the light cone wave functions for a virtual photon to split into quark-antiquark states,
including for the first time quark masses at one loop accuracy. These wave functions can be used to
calculate cross sections for several precision probes of perturbative gluon saturation at the Electron-Ion
Collider. Using these wave functions we derive, for the first time, the dipole picture deep inelastic scattering
cross sections at one loop for longitudinal and transverse virtual photons including quark masses. The
quark masses are renormalized in the pole mass scheme, satisfying constraints from the requirement of
Lorentz invariance of the quark Dirac and Pauli form factors.
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Introduction.—It is believed that in very high energy
hadronic collisions, the partonic constituents of hadrons
and nuclei exhibit a qualitatively new kind of gluon
saturation behavior, characterized by strong nonlinear
interactions even at short distance scales where the cou-
pling is weak. An experimentally clean way to study this
regime are high energy deep inelastic scattering (DIS)
experiments. Studying gluon saturation is a key science
goal of the future Electron-Ion Collider (EIC) [1,2], which
will address it with a broad program of precision mea-
surements. The EIC can reach further into the saturation
regime than previous measurements at HERA, because it
also collides heavy nuclei, where saturation phenomena are
enhanced [3].

One could search for signals of gluon saturation in the
renormalization group evolution of cross sections as
functions of the kinematical variables Q° and x [4,5].
With the EIC collision energy, however, the kinematical
lever arm to distinguish fine details or asymptotic features
of evolution is limited, since evolution is only logarithmic
in Q7 or x. Instead, one must most likely look for evidence
of saturation in a combination of high precision measure-
ments of different processes. Of particular interest are
processes involving charm quarks, where the quark mass
is heavy enough to justify a weak coupling treatment, but
light enough to be sensitive to saturation effects. In a
collinear factorization picture, the charm cross section is
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one of the most sensitive probes of small-x gluons at the
EIC [6]. To access gluon saturation it is better to use instead
the coordinate space dipole picture [7-12] of DIS, where
the virtual photon emitted by the electron first splits to
partonic constituents, which then eikonally interact with the
target. The dipole picture naturally involves the eikonal
scattering amplitudes, Wilson lines, used to quantify gluon
saturation in the CGC picture [13—15]. In the dipole picture
light quarks are affected by contributions of nonperturba-
tively large dipoles in the “aligned jet” configurations
[16,17], but heavy quarks are safe from this part of phase
space.

The theoretical framework of choice to understand
saturation and the dipole picture in high energy DIS is
QCD light cone perturbation theory [18-21] (LCPT). Here
one first calculates the photon light cone wave function
(LCWF) describing the probability amplitude of the photon
to split into a partonic state. The LCWF is a universal
quantity in perturbative field theory. It is a necessary
ingredient in cross section calculations for different inclu-
sive and exclusive scattering processes [17,22-31].
Recently, the photon LCWF has been calculated to one
loop accuracy in QCD perturbation theory [32-34] leading
to a description of the HERA inclusive cross section [35]
with massless quarks (see also Refs. [36,37]). In this Letter
we report the result of the calculation of the so far unknown
NLO y; — gg wave function with massive quarks.

This Letter is accompanied by a longer paper [38] with
full technical details on the calculation for the transverse
photon, the longitudinal photon having already been
presented in Ref. [39] (see also Ref. [40]). In a separate
follow-up paper we will discuss the issue of quark mass
renormalization in LCPT in more detail.

Published by the American Physical Society
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FIG. 1. The only diagram for the virtual photon-to-quark-
antiquark wave function at leading order. There is one energy
denominator, denoted with a dashed line.

Calculational setup.—

Loop calculations in LCPT.—We use the Hamiltonian
LCPT formulation of perturbative QCD [18-21]. This
approach is an ideal one for high energy scattering, where
particles move on lightlike trajectories. The additional
advantage of the LCPT formulation in light cone gauge
is that only physical degrees of freedom are present in the
calculation, which comes at the expense of having addi-
tional “instantaneous” four-particle interactions. An unfor-
tunate disadvantage is that because of the separate
treatment of longitudinal and transverse coordinates, the
theory is not manifestly Lorentz invariant at the quantum
level.

In the LCPT approach, one develops the full quantum
state of the incoming particle, in this case the virtual
photon, in a Fock state expansion of bare states. At small x,
the partons interact with the color fields of the target, thus
only Fock states consisting of quarks and gluons are of
relevance here. The leading such component in the photon
state is the quark-antiquark dipole, depicted in Fig. 1. At
NLO one also needs to include corrections from gluon
loops, and gluon emission diagrams, i.e., ggg Fock states.

The coefficients of the expansion of the interacting
(photon) state in terms of bare states are known as light
cone wave functions. Perturbatively they are obtained in
terms of a set of diagrammatical rules [21,41]. For every
vertex one includes a matrix element depending on the
helicities, polarizations, and momenta. Instantaneous ver-
tices are denoted by vertical crossed lines (time propagates
from left to right). For every intermediate state (including
the final state), one includes a light cone energy denom-
inator which, in a covariant perturbation theory language,
originates from integrating over the light cone energy
k= and setting it on shell using the pole of a propagator.
One then integrates over loop momenta and sums over
internal helicities.

The leading order y* — gg wave function (see, e.g.,
Refs. [7,9,10,22]) is obtained by evaluating the diagram of
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FIG. 3. Instantaneous self-energy diagrams for the y* — ¢g
LCWEF, with two energy denominators (dashed lines); these
diagrams do not exist for longitudinal photons.

Fig. 1, with one gauge boson-fermion vertex and one
energy denominator. The diagrams needed for the NLO
calculation are the same as in the massless case [32-34], as
are most other calculational details. For our calculation we
need first the self-energy corrections for the fermions,
Fig. 2. For transverse photons, there is also a self-energy
correction from an instantaneous interaction, Fig. 3. The
photon-quark-antiquark vertex gets corrections from nor-
mal physical gluons, Fig. 4, and also from instantaneous
interactions, Fig. 5. We have evaluated all these diagrams.

The loop momenta are integrated over in 2 — 2¢ trans-
verse dimensions, with a cutoff a regularizing any soft
divergences arising from longitudinal momentum integrals
in the k™ — 0 limit. After integrating over the loop
momenta one sums over internal helicities and gluon
polarizations. We have performed the helicity sums both
in the conventional dimensional regularization (CDR)
scheme as in Refs. [32,33], and in the four-dimensional
helicity (FDH) scheme as in Ref. [34], with equal results for
the cross sections.

Mass renormalization.—At this order also the quark mass
is renormalized. In our Hamiltonian LCPT approach one
first derives from the Lorentz-invariant Lagrangian a
Hamiltonian, which is then canonically quantized in light
cone gauge A" = 0. In the Hamiltonian the fermion mass
appears in two separate terms [42]. The free part has a
“kinetic mass,” determining the relation between light
cone energy k= = (k% +m?)/(2k") and three-momentum
(k, k™). There is also the “vertex mass,” the coefficient of
the light cone helicity flip term of the gauge boson-qg
vertex [see Eq. (1)]. The latter did not need to be
renormalized in for the longitudinal photon [39].

Lorentz invariance at the original Lagrangian level
guarantees that the kinetic and vertex masses are equal
in nature. Regularization methods that break Lorentz
invariance, such as the transverse dimensional regulariza-
tion combined with longitudinal cutoffs used in our
previous calculations for massless quarks, Refs. [32-34],

FIG. 2. Quark self-energy diagrams for the y* — gg LCWE,
with three energy denominators (dashed lines).

FIG. 4. Vertex correction diagrams,
denominators.

with three energy
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FIG. 5. Instantaneous vertex correction diagrams, only the last
one appears for longitudinal photons.

require the restoration of this invariance at the loop level by
separate renormalization conditions for the kinetic and
vertex masses. This was already known from the pioneering
LCPT calculations of Refs. [43-46]. One can, however,
slightly modify the regularization procedure by including,
in addition to the diagrams appearing here, also the “self-
induced inertia” or “seagull” diagrams [21,47,48] before
the integrations. In the latter case, it becomes possible to
maintain the equality of the vertex and kinetic masses.

Spinor structure.—Our calculation is organized in terms of
possible independent spinor structures of the wave func-
tion. The spinor structure of the leading order light-cone
gauge 75(q) = q(ko)g(k,) matrix element can be decom-
posed (see, e.g., Ref. [39]) in terms of three independent
spinor structures as

#(0),(q)o(1) = - {[kg K sia)o(1)

REERA
1._ . )
3 HO) o) P

. mawwyfv(l)}eﬁ, )

where i, j are transverse indices and P = (ki /¢ ")k, —
(k§/q")k, is the gg relative transverse momentum. The
result for the y7. — gg wave function after evaluating all the
loop diagrams, Figs. 2-5, can be decomposed in terms of
four structures,

- ; , a,C

it g el o) (% ) @
where a; = ¢*/4r is the QCD coupling constant, Cp =
(N.2—=1)/(2N,) and N, is the number of colors. We
obtain the functions VT, N7, 8T, and M by evaluating the
loop diagrams. For the longitudinal photon, one can per-
form a similar, but simpler decomposition. Comparing
Egs. (1) and (2) we can see that the vertex mass is rela-
ted to MT.

On-shell renormalization scheme.—For mass renormaliza-
tion in the on-shell scheme we must look at the wave

function in a specific kinematical configuration that we
refer to as the on-shell point, corresponding to a timelike
virtual photon with ¢~ = [g*/(2kgk])](P? + m?) (for
q = 0). Note that the physical region for DIS is spacelike,
q~ < 0. From Lorentz invariance we know that at the on-
shell point the whole y*¢g vertex function can be expressed
in terms of two known scalar functions, the Dirac and Pauli
form factors,

Folg®/m)aO)v(1) + Fy(q?/m?) () o(1). (3

It is a straightforward exercise to express Fp(g?/m?) and
Fp(q*/m?) in terms of VI, NT, 8T, and MT.

One mass renormalization condition is given by the
requirement that the self-energy diagrams in Figs. 2 and 3
do not have a pole at the on-shell point, as discussed
explicitly in Ref. [39]. For a Lorentz-invariant regulariza-
tion including the self-induced inertia diagrams, no other
conditions are needed and the four conditions for V7, N7,
ST, and MT at the on-shell point are additional nontrivial
checks of our result. On the other hand, with the regulari-
zation scheme of Refs. [32-34], the condition on MT
becomes an additional vertex mass renormalization con-
dition, leaving three consistency checks for V7, AT, and
ST In both cases our result for the mass-renormalized wave
function is the same.

From wave function to cross section—To calculate the
inclusive DIS cross section, one additionally needs to
specify the interaction of the state with the target proton
or nucleus. In the CGC formalism [15] this is described by
an eikonal interaction with a nonperturbatively strong color
field. The field is parametrized in terms of Wilson lines
as functions of the transverse coordinate. Thus one must,
after performing the mass renormalization, transform the
LCWF’s into mixed transverse coordinate-longitudinal
momentum space. The interactions of the mixed space
states with the target bring in Wilson line correlators that
are the same as in the massless case. Also similarly to the
massless case, there are cancellations of divergences
(appearing as 1/e poles) and scheme-dependent terms
between the gg and ggg contributions. In order to obtain
a manifestly finite expression for the cross section these
must be subtracted from the ggg terms and added to the gg
terms, as in the massless case [32-34]. We are performing
this step within the same subtraction scheme as in Ref. [34].

Result and discussion.—For high energy QCD -calcu-
lations one needs the wave function in mixed transverse
coordinate-longitudinal momentum space. Some of the
spinor matrix elements in Eq. (2) depend on the relative
qq transverse momentum P. Thus, what is needed are the
scalar functions V', N7, ST, and MT multiplied by
specific powers of the transverse momentum and by the
leading order energy denominator, Fourier transformed to
coordinate space. We denote this multiplication and trans-
formation by F. The NLO y; — gg LCWE, the main result
of this Letter, can be written as
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The contribution from VT reads
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where we have defined k., = \/z(1 — z)Q* + m? with z = kJ /g". Here |x(| = |xo — X, is the transverse size of the ¢g
dipole and y? is the transverse dimensional regularization scale. The factor (D — 4)/(D — 4) is the regularization scheme
dependent part, from which the FDH scheme result is obtained as D, — 4 and the CDR one as D; — D =4 —2¢. The
function K, is the modified Bessel function of the second kind and the functions QIT) and IIT, are given by
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2 1-—
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>
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Here, +[z <> 1 — z] adds a term corresponding to the whole preceding expression with the replacement. Correspondingly,
the N7 contribution is

i)
IXp

{Q kKo (Ixon k) + I3}, (8)
where Q. and I}, are given by

+1-27 1+y (1-2)[2z+1 m? K2
Q. =TT og(1 - 1 - =)+ 2 g (2 )~z 1=
=S g1 - ) ptog (2 )| - U B -+ e () e 1-d )

072001-4



PHYSICAL REVIEW LETTERS 129, 072001 (2022)

(I_Z) o

(I-2)
{(2+M)MZ+M)(] +M(1_)()KZK1<|X01| K%_'—u(l—)()’(%)

m* [ z X ,  (I=2z) , , (1-2) ,

+ )2(<1_Z+1_Z[M—2Z—2u)(]) Kz+u(1 _)()K)(Kl |X01| KZ+M(I—Z)KX —[M_)O]

-z 1-2]. (10)
From ST one has
PP 57\ ;] (1—2) [xhxg 67 /z dy [® du (-2,
f|:< P2 2)8 ] 2 |:|X01|2 21 J)o (1 —)() 0 (u+ 1)2|X01| Kz +”(1 —}()KX
1-2)

<Ky |x K?+u( K| +lze -2 11
1<| o1y /K (1= [ ] (11)

Finally, the combination VT + MT — 87 /2 yields
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Above, the notation L is defined as

L=>Y" {Li2<m> —|—[z<—>1—z]], (14)

o==%1

where Li, is the standard dilogarithm function and

y = /1 +4m?/Q?. To our knowledge this is a completely
new fundamental result in perturbative QCD.

We have also calculated the total DIS cross section to
one loop order, using our results for the gg LCWF and the
more straightforward, but algebraically complicated gluon

|
emission wave functions. After the cancellation of UV
divergences between the ¢g and ggg contributions, the

cross section has a similar structure as for massless
quarks [33,34]:

o =0 W+ o) W+ O(a,a?),  (15)

where a,,, is the QED coupling constant. The “dipole”

subt

contribution aLT| corresponds to just the quark-

antiquark pair crossmg the shockwave color field of
the target. subt

The ggg-term oLT| corresponds to a
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quark-antiquark-gluon system crossing the shockwave. The
integration in the limit k™ — O for this gluon develops a
logarithmically large contribution, which must be re-
summed into the B/JIMWLK evolution of the target color
fields in the same way as for massless quarks [35,49]. The
transverse coordinate and gluon momentum fraction inte-
grals cannot be performed analytically in the general case,
since they depend on the properties of the Wilson line
correlators describing the target. The quark momentum
fraction integrals are also best left for numerical evaluation,
similarly as in the case of massless quarks.

In addition to integrals that are similar to the massless
case, the mass-dependent parts include additional integrals
over Schwinger parameters that we have not been able to
perform analytically. These integrals are generalizations of
Bessel K -function integral representations appearing in
the massless case. They are very well convergent, and we
do not expect their numerical evaluation to be significantly
more complicated than a numerical evaluation of a
normal Bessel K; function. All the explicit expressions
of the cross sections are written out in the Supplemental
Material [50].

In conclusion, after a lengthy calculation, we have
obtained the one loop LCWF’s for the process y* — ¢g.
These are new results in field theory by themselves,
expressing the full one-loop structure of the photon-
quark-antiquark vertex in light cone gauge. We believe
our result will be an important element in many future
calculations. For example, the LCWF’s will enable several
calculations of exclusive processes in high energy DIS,
such as diffractive structure functions, diffractive dijets, and
exclusive vector meson production, at NLO accuracy and
including massive quarks. As a first important application,
we have computed the full NLO cross section for DIS in the
dipole picture with quark masses. The cross section
expressions obtained in this work will pave the way for
simultaneous global fits of total and heavy quark cross
sections measured at HERA, following the massless quark
case [35]. These cross sections will be crucial for obtaining
more precise predictions for EIC cross sections including
the effects of gluon saturation.

We thank H. Mintysaari, J. Penttala, and H. Hinninen
for useful discussions. This work has been supported by the
Academy of Finland, projects 321840 and 1322502, under
the European Union’s Horizon 2020 research and inno-
vation programme by the STRONG-2020 project (Grant
Agreement No. 824093), by the European Research
Council, Grant Agreements No. ERC-2015-CoG-681707
and No. ERC-2016-CoG-725369, and by the National
Science Centre (Poland) under the research Grant
No. 2020/38/E/ST2/00122 (SONATA BIS 10). The content
of this Letter does not reflect the official opinion of the
European Union and responsibility for the information and
views expressed therein lies entirely with the authors.

[1] A. Accardi et al., Electron Ion Collider: The next QCD
frontier, Eur. Phys. J. A 52, 268 (2016).

[2] R. Abdul Khalek et al., Science requirements and detector
concepts for the Electron-Ion Collider: EIC Yellow report,
arXiv:2103.05419.

[3] H. Kowalski, T. Lappi, and R. Venugopalan, Nuclear
Enhancement of Universal Dynamics of High Parton
Densities, Phys. Rev. Lett. 100, 022303 (2008).

[4] J. L. Albacete, J. G. Milhano, P. Quiroga-Arias, and J. Rojo,
Linear vs non-linear QCD evolution: From HERA data to
LHC phenomenology, Eur. Phys. J. C 72, 2131 (2012).

[5] C. Marquet, M. R. Moldes, and P. Zurita, Unveiling satu-
ration effects from nuclear structure function measurements
at the EIC, Phys. Lett. B 772, 607 (2017).

[6] E.C. Aschenauer, S. Fazio, M.A.C. Lamont, H.
Paukkunen, and P. Zurita, Nuclear structure functions at a
future Electron-Ion Collider, Phys. Rev. D 96, 114005
(2017).

[7] N.N. Nikolaev and B.G. Zakharov, Colour transparency
and scaling properties of nuclear shadowing in deep
inelastic scattering, Z. Phys. C 49, 607 (1991).

[8] B.Z. Kopeliovich and B. G. Zakharov, Quantum effects and
color transparency in charmonium photoproduction on
nuclei, Phys. Rev. D 44, 3466 (1991).

[9] N. Nikolaev and B. G. Zakharov, Pomeron structure func-
tion and diffraction dissociation of virtual photons in
perturbative QCD, Z. Phys. C 53, 331 (1992).

[10] A.H. Mueller, Soft gluons in the infinite momentum wave
function and the BFKL pomeron, Nucl. Phys. B415, 373
(1994).

[11] A.H. Mueller and B. Patel, Single and double BFKL
pomeron exchange and a dipole picture of high-energy
hard processes, Nucl. Phys. B425, 471 (1994).

[12] A.H. Mueller, Unitarity and the BFKL pomeron, Nucl.
Phys. B437, 107 (1995).

[13] L. D. McLerran and R. Venugopalan, Computing quark and
gluon distribution functions for very large nuclei, Phys. Rev.
D 49, 2233 (1994).

[14] H. Weigert, Evolution at small x;: The color glass con-
densate, Prog. Part. Nucl. Phys. 55, 461 (2005).

[15] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,
The color glass condensate, Annu. Rev. Nucl. Part. Sci. 60,
463 (2010).

[16] H. Miéntysaari and P. Zurita, In depth analysis of the
combined HERA data in the dipole models with and without
saturation, Phys. Rev. D 98, 036002 (2018).

[17] H. Miéntysaari and B. Schenke, Confronting impact para-
meter dependent JIMWLK evolution with HERA data,
Phys. Rev. D 98, 034013 (2018).

[18] J. B. Kogut and D. E. Soper, Quantum electrodynamics in
the infinite momentum frame, Phys. Rev. D 1, 2901 (1970).

[19] J. Bjorken, J. B. Kogut, and D. E. Soper, Quantum electro-
dynamics at infinite momentum: Scattering from an external
field, Phys. Rev. D 3, 1382 (1971).

[20] G.P. Lepage and S.J. Brodsky, Exclusive processes in
perturbative quantum chromodynamics, Phys. Rev. D 22,
2157 (1980).

[21] S.J. Brodsky, H.-C. Pauli, and S.S. Pinsky, Quantum
chromodynamics and other field theories on the light cone,
Phys. Rep. 301, 299 (1998).

072001-6


https://doi.org/10.1140/epja/i2016-16268-9
https://arXiv.org/abs/2103.05419
https://doi.org/10.1103/PhysRevLett.100.022303
https://doi.org/10.1140/epjc/s10052-012-2131-x
https://doi.org/10.1016/j.physletb.2017.07.035
https://doi.org/10.1103/PhysRevD.96.114005
https://doi.org/10.1103/PhysRevD.96.114005
https://doi.org/10.1007/BF01483577
https://doi.org/10.1103/PhysRevD.44.3466
https://doi.org/10.1007/BF01597573
https://doi.org/10.1016/0550-3213(94)90116-3
https://doi.org/10.1016/0550-3213(94)90116-3
https://doi.org/10.1016/0550-3213(94)90284-4
https://doi.org/10.1016/0550-3213(94)00480-3
https://doi.org/10.1016/0550-3213(94)00480-3
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1016/j.ppnp.2005.01.029
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1103/PhysRevD.98.036002
https://doi.org/10.1103/PhysRevD.98.034013
https://doi.org/10.1103/PhysRevD.1.2901
https://doi.org/10.1103/PhysRevD.3.1382
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1016/S0370-1573(97)00089-6

PHYSICAL REVIEW LETTERS 129, 072001 (2022)

[22] H. Kowalski, L. Motyka, and G. Watt, Exclusive diffractive
processes at HERA within the dipole picture, Phys. Rev. D
74, 074016 (2000).

[23] G. Watt and H. Kowalski, Impact parameter dependent
colour glass condensate dipole model, Phys. Rev. D 78,
014016 (2008).

[24] A. H. Rezaeian, M. Siddikov, M. Van de Klundert, and R.
Venugopalan, Analysis of combined HERA data in the
impact-parameter dependent saturation model, Phys. Rev. D
87, 034002 (2013).

[25] R. Boussarie, A.V. Grabovsky, L. Szymanowski, and S.
Wallon, Impact factor for high-energy two and three jets
diffractive production, J. High Energy Phys. 09 (2014) 026.

[26] R. Boussarie, A.V. Grabovsky, D. Yu. Ivanov, L.
Szymanowski, and S. Wallon, Next-to-Leading Order
Computation of Exclusive Diffractive Light Vector Meson
Production in a Saturation Framework, Phys. Rev. Lett. 119,
072002 (2017).

[27] R. Boussarie, A.V. Grabovsky, L. Szymanowski, and S.
Wallon, On the one loop y*) — ¢ impact factor and the
exclusive diffractive cross sections for the production of two
or three jets, J. High Energy Phys. 11 (2016) 149.

[28] T. Lappi, H. Mintysaari, and J. Penttala, Relativistic
corrections to the vector meson light front wave function,
Phys. Rev. D 102, 054020 (2020).

[29] M. A. Escobedo and T. Lappi, Dipole picture and the
nonrelativistic expansion, Phys. Rev. D 101, 034030 (2020).

[30] H. Mintysaari and J. Penttala, Exclusive heavy vector
meson production at next-to-leading order in the dipole
picture, Phys. Lett. B 823, 136723 (2021).

[31] H. Mintysaari and J. Penttala, Exclusive production of light
vector mesons at next-to-leading order in the dipole picture,
Phys. Rev. D 105, 114038 (2022).

[32] G. Beuf, Dipole factorization for DIS at NLO: Loop
correction to the photon to quark-antiquark light-front
wave-functions, Phys. Rev. D 94, 054016 (2016).

[33] G. Beuf, Dipole factorization for DIS at NLO: Combining
the ¢g and ggqg contributions, Phys. Rev. D 96, 074033
(2017).

[34] H. Hinninen, T. Lappi, and R. Paatelainen, One-loop
corrections to light cone wave functions: The dipole picture
DIS cross section, Ann. Phys. (Amsterdam) 393, 358 (2018).

[35] G. Beuf, H. Hédnninen, T. Lappi, and H. Mintysaari, Color
glass condensate at next-to-leading order meets HERA data,
Phys. Rev. D 102, 074028 (2020).

[36] I. Balitsky and G. A. Chirilli, Photon impact factor in the
next-to-leading order, Phys. Rev. D 83, 031502(R)
(2011).

[37] L. Balitsky and G. A. Chirilli, Photon impact factor and k-
factorization for DIS in the next-to-leading order, Phys. Rev.
D 87, 014013 (2013).

[38] G. Beuf, T. Lappi, and R. Paatelainen, companion paper,
Massive quarks in NLO dipole factorization for DIS:
Transverse photon, Phys. Rev. D 106, 034013 (2022).

[39] G. Beuf, T. Lappi, and R. Paatelainen, Massive quarks in
NLO dipole factorization for DIS: Longitudinal photon,
Phys. Rev. D 104, 056032 (2021).

[40] L. Dai and M. Lublinsky, NLO JIMWLK evolution with
massive quarks, arXiv:2203.13695.

[41] Y. V. Kovchegov and E. Levin, Quantum Chromodynamics
at High Energy, Cambridge monographs on particle phys-
ics, nuclear physics and cosmology Vol. 33 (Cambridge
University Press, Cambridge, England, 2012).

[42] M. Burkardt and A. Langnau, Rotational invariance in light
cone quantization, Phys. Rev. D 44, 3857 (1991).

[43] D. Mustaki, S. Pinsky, J. Shigemitsu, and K. Wilson,
Perturbative renormalization of null plane QED, Phys.
Rev. D 43, 3411 (1991).

[44] W.-M. Zhang and A. Harindranath, Role of longitudinal
boundary integrals in light front QCD, Phys. Rev. D 48,
4868 (1993).

[45] W.-M. Zhang and A. Harindranath, Light front QCD. 2:
Two component theory, Phys. Rev. D 48, 4881 (1993).

[46] A. Harindranath and W.-M. Zhang, Light front QCD. 3:
Coupling constant renormalization, Phys. Rev. D 48, 4903
(1993).

[47] H.C. Pauli and S.J. Brodsky, Solving field theory in
one space one time dimension, Phys. Rev. D 32, 1993
(1985).

[48] A.C. Tang, S.J. Brodsky, and H. C. Pauli, Discretized light
cone quantization: Formalism for quantum electrodynamics,
Phys. Rev. D 44, 1842 (1991).

[49] B. Ducloué, H. Hinninen, T. Lappi, and Y. Zhu, Deep
inelastic scattering in the dipole picture at next-to-leading
order, Phys. Rev. D 96, 094017 (2017).

[50] See  Supplemental Material at  http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.072001 for LCWF
for the longitudinal photon from Ref. [39] in the notations of
this paper and explicit expressions for the total transverse
and longitudinal photon cross sections.

072001-7


https://doi.org/10.1103/PhysRevD.74.074016
https://doi.org/10.1103/PhysRevD.74.074016
https://doi.org/10.1103/PhysRevD.78.014016
https://doi.org/10.1103/PhysRevD.78.014016
https://doi.org/10.1103/PhysRevD.87.034002
https://doi.org/10.1103/PhysRevD.87.034002
https://doi.org/10.1007/JHEP09(2014)026
https://doi.org/10.1103/PhysRevLett.119.072002
https://doi.org/10.1103/PhysRevLett.119.072002
https://doi.org/10.1007/JHEP11(2016)149
https://doi.org/10.1103/PhysRevD.102.054020
https://doi.org/10.1103/PhysRevD.101.034030
https://doi.org/10.1016/j.physletb.2021.136723
https://doi.org/10.1103/PhysRevD.105.114038
https://doi.org/10.1103/PhysRevD.94.054016
https://doi.org/10.1103/PhysRevD.96.074033
https://doi.org/10.1103/PhysRevD.96.074033
https://doi.org/10.1016/j.aop.2018.04.015
https://doi.org/10.1103/PhysRevD.102.074028
https://doi.org/10.1103/PhysRevD.83.031502
https://doi.org/10.1103/PhysRevD.83.031502
https://doi.org/10.1103/PhysRevD.87.014013
https://doi.org/10.1103/PhysRevD.87.014013
https://doi.org/10.1103/PhysRevD.106.034013
https://doi.org/10.1103/PhysRevD.104.056032
https://arXiv.org/abs/2203.13695
https://doi.org/10.1103/PhysRevD.44.3857
https://doi.org/10.1103/PhysRevD.43.3411
https://doi.org/10.1103/PhysRevD.43.3411
https://doi.org/10.1103/PhysRevD.48.4868
https://doi.org/10.1103/PhysRevD.48.4868
https://doi.org/10.1103/PhysRevD.48.4881
https://doi.org/10.1103/PhysRevD.48.4903
https://doi.org/10.1103/PhysRevD.48.4903
https://doi.org/10.1103/PhysRevD.32.1993
https://doi.org/10.1103/PhysRevD.32.1993
https://doi.org/10.1103/PhysRevD.44.1842
https://doi.org/10.1103/PhysRevD.96.094017
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.072001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.072001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.072001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.072001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.072001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.072001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.072001

