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We study the quantum Lyapunov exponent λL in theories with spacetime-independent disorder. We first
derive self-consistency equations for the two- and four-point functions for products ofN models coupled by
disorder at large N, generalizing the equations appearing in SYK-like models. We then study families of
theories in which the disorder coupling is an exactly marginal deformation, allowing us to follow λL from
weak to strong coupling. We find interesting behaviors, including a discontinuous transition into chaos,
mimicking classical KAM theory.
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Introduction.—Systems with disorder are ubiquitous in
nature, and display a wide range of interesting physical
phenomena. Disorder can sometimes be modeled by
introducing random couplings, and averaging over these
random couplings can lead to simplifications which allow
for exact computations, at least when the number of degrees
of freedom is parametrically large. A notable example is the
Sachdev-Ye-Kitaev (SYK) model, in which (nearly) con-
formal symmetry is restored at low energies [1–4], and such
averages allow for the computation of the quantum
chaos exponent λL. The latter is defined by the fastest
growing exponential mode in the double commutator
h½UðtÞ;Wð0Þ�2iβ ∼ eλLt for generic operators U, W, over
an appropriate timescale, with temperature 1=β [5].
The SYK model consists of N free quantum mechanical

fermions deformed by a relevant all-to-all spacetime-
independent disordered interaction. Generalizations have
appeared which consist of N copies of other free theories
with similar interactions [6–13]. In this Letter we study
quantum chaos in a more general setting by studying N
copies of a general core modelQ (which can be a quantum
field theory or a spin system), deformed by a spacetime-
independent all-to-all interaction. In particular, we even-
tually focus on Q being a conformal field theory (CFT) in
0þ 1 or in higher dimensions, and with an exactly
marginal disorder interaction. In such a setup we have
better control over the space of couplings over which we
are averaging, eliminating the complications of the renorm-
alization group (RG) and without having to resort to strong
coupling.

The theories we study are of the form

QN þ
XN

i1≠…≠iq

Ji1…iqOi1…Oiq ; ð1Þ

where QN denotes N decoupled copies of the model Q, Oi
with i ¼ 1;…; N are the N copies of a local operator O in
Q, and Ji1…iq are Gaussian random variables with variance

hJ2i1…iq
i ¼ J2ðq − 1Þ!

Nq−1 : ð2Þ

In the case where Q is a CFT, we will take O to be a
primary operator of this core CFT, and equation (1) should
be interpreted in conformal perturbation theory in J. We
call such theories disordered CFTs; the simplest example of
this setup is the SYK model itself, as a disordered free
fermion theory.
We will first derive self-consistency equations for the

two- and four-point functions ofOi at leading order in 1=N
for general disordered CFTs. These extend known results
for disordered free theories like the SYK model [3,4]), and
for spin systems [14]. We will also discuss similar results
for the double commutator [defined in (7) below].
Although these self-consistency equations are complicated,
they are tractable in perturbation theory in J and allow us to
establish the existence of a kernel structure from which we
can extract the chaos exponent λL, which is the rate of
growth of a double commutator. The latter is given by the
fastest growing eigenvector (with eigenvalue 1) of a
specific integral kernel KR [see Eq. (9)], as long as this
rate of growth is indeed positive [2,5,15]. Wewill denote by
λkerL the putative chaos exponent read from the diagonal-
ization KR.
We will be interested in computing the chaos exponent

λL as a function of J, as it is varied from weak to strong
coupling. The diagonalization of KR is a difficult process,
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which can usually be done only when conformal invariance
is restored. Normally, the disorder is a relevant deforma-
tion. To compute the chaos one first flow to the ir CFT
(which is equivalent to take J ¼ ∞) and find the chaos
exponent there [6]. In this Letter we focus on cases where
the averaged interacting theory is conformally invariant for
all J. This can be done by demanding that the disorder
interaction itself be exactly marginal, in which case the
theory is conformally invariant for every realization of the
couplings, and the space of J’s forms a conformal manifold
[16]. The disorder average is then simply a nonuni-
form average over this conformal manifold, with no RG-
related complications (for recent discussions of averages
over conformal manifolds see Refs. [17,18], and for the
marginal case see Ref. [19]).
Surprisingly, we will find models where λkerL ðJÞ is

negative at weak coupling. This signals a breakdown of
the approximations involved in the computation, and so in
this case the true chaos exponent simply vanishes, λL ¼ 0.
In other words, we have

λL ¼ maxð0; λkerL Þ: ð3Þ

As a result, there are two possible behaviors for the onset of
chaos: either the theory undergoes a continuous transition
into chaos as in Fig. 1(a) or a discontinuous transition as in
Fig. 1(b), corresponding to whether λkerL is non-negative or
negative at small enough J, respectively [20].
The discontinuous transition into chaos is a surprising

result, and it is tempting to compare it to similar results in
classical chaos, the most famous one being the KAM
theorem. In order to sharpen the comparison, we also
discuss what a single core CFT should obey in order for the
transition into chaos to be discontinuous. Similar works on
the onset of quantum chaos include [3,8,21–24], and
Refs. [13,25] are especially relevant.
We will apply our formalism to two classes of examples

where the disorder interaction is exactly marginal. The first
class is disordered generalized free fields in one dimension
(following [12]) and in two dimensions. The second class is
the disordered N ¼ 2 supersymmetric (SUSY) Aq−1 min-
imal models. In practice, we will only discuss the simplest
case of the A2 minimal model here. We will find a

discontinuous transition in the former and a continuous
transition in the latter.
More details and discussions on the computations and

results can be found in the companion paper [26].
Disorder around a nontrivial CFT.—The kernel struc-

ture of the four-point function: We start by writing a
self-consistency equation for the averaged two-point
function of (1),

GðxÞ ¼ hOiðxÞOið0Þi: ð4Þ

Using the G − Σ formalism [2,3], it can be shown that G
obeys a generalized Schwinger-Dyson (SD) equation at
leading order in 1=N, which appears diagrammatically in
Fig. 2(a). The equation includes subtracted n-point func-
tions denoted by “ns,” which are combinations of the
standard core CFT n-point functions with additional theory-
independent subtractions which can be derived order by
order in n [26]. The first few subtracted n-point functions
(assuming Oi are real) are shown in Fig. 2(b).
Generalizations to complexOi exist, and also to superfields
(in which case the diagrams correspond to supergraphs).
The contributions to the averaged connected four-point

function

C ¼ 1

N2

X
i;j

ðhOiOiOjOji − hOiOiihOjOjiÞ ð5Þ

also have a simple form, and obey an iterative ladder
structure similar to the case of disordered free fields:

C ¼
X∞
n¼0

KnF0; ð6Þ

where the kernelK and the initial diagram F0 are defined in
Fig. 3(a). The definition requires new subtracted n-point

FIG. 1. The behaviors we find for the chaos exponent
as a function of an exactly marginal disorder deformation J:
(a) continuous and (b) discontinuous. λkerL corresponds to the
dashed line and λL to the solid line.

FIG. 2. (a) The SD equations. G insertions appear as red
lines, and black dots denote insertions of the deformation (1).
(b) Examples of ns, the subtracted n-point functions. Dashed
lines connect to the external points, and numerical factors
indicate symmetry factors. The blue numbers inside the brackets
denote possible ways of permuting the legs.
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functions called n0s, which are again theory independent
[26]. The first few n0s for real Oi appear in Fig. 3(b).
Some comments are in order. First, although the kernelK

is very complicated, knowing that an iterative ladder
structure exists for the four-point function is already an
important result since it allows for a systematic computa-
tion of λL, as we now discuss. Second, although a full
solution of the two- and four-point functions requires
knowing all n-point functions of the core CFT, a solution
to order J2n in perturbation theory in J only requires
knowing the 2m-point functions for m ≤ nþ 1.
The double commutator and chaos: A similar analysis

also applies to the computation of the double commutator:

WRðt1; t2Þ ¼
1

N2

XN
i;j¼1

h½Oiðβ=2Þ;Ojðβ=2þ it2Þ�

× ½Oið0Þ;Ojðit1Þ�i; ð7Þ

where we suppress the spatial positions. In chaotic theories,
at large Lorentzian times t1, t2, the double commutator is
expected to grow exponentially:

lim
t1;t2→∞

WRðt1; t2Þ ∼
1

N
exp½þλLðt1 þ t2Þ=2�: ð8Þ

Since the double commutator can be written in terms of
analytically continued four-point functions (5) and (7)
satisfy a “retarded” version of the kernel structure of
Fig. 3(a):

WR ¼
X∞
n¼0

Kn
RF0 ⇒ ð1 − KRÞWR ¼ F0; ð9Þ

with KR the retarded kernel [15]. The retarded kernel is
composed of the same diagrams as in Fig. 3(a), where one

plugs in specific analytic continuations in time of the
n-point functions.
If λL > 0, the ladder structure (however complicated)

allows us to compute it in cases where the averaged
correlator has conformal symmetry (see Ref. [6] for a
review). This is done by finding the largest solution λkerL of
the equation kRðλkerL Þ ¼ 1, where kRðλÞ are the eigenvalues
of the retarded kernel KR. If λkerL > 0 then we can identify
λL ¼ λkerL , and otherwise we learn that λL ¼ 0.
Importantly, if J is exactly marginal, kRðλLÞ can be found

perturbatively in J. As a result, one can compute λkerL ðJÞ in
orders of J by using finitely many core CFT correlation
functions at every order. The leading order of the equation
is explicitly

kRðλÞ ¼
J2

4

Z
d2x3d2x4 exp½λ=2ðt3 þ t4 − t1 − t2Þ�

× h½Oðβ=2þ it2Þ;Oðβ=2þ it4Þ�½Oðit1Þ;Oðit3Þ�i0

×
Glr;Δðq−1Þþλ

2
ð3; 4Þ

Glr;Δþλ
2
ð1; 2Þ þOðJ4Þ; ð10Þ

where h·i0 denotes an expectation value at J ¼ 0 (i.e., of the
core CFT). The integration range of the points 3,4 is over
the past light cone of the points 1,2, respectively, and Glr;Δ
is the analytically continued cylinder 2-point function:

Glr;Δð1; 2Þ ¼
1

½4 coshðt12−x12
2

Þ coshðt12þx12
2

Þ�Δ : ð11Þ

The expansion in J can also be used to determine
whether the transition into chaos would be continuous or
discontinuous (see Fig. 1). This requires finding the sign of
λkerL in the limit J ¼ 0þ. Using the leading contribution to
kR in orders of J2 (10), it is easy to see that the exponent
λkerL ðJ ¼ 0þÞ is given by the maximal λ for which the
integral (10) diverges. If the integral diverges at a positive
(negative) value of λ, we have a continuous (discontinuous)
transition into chaos.
At J ¼ 0, the kernel vanishes, and so it is not clear that

λLðJ ¼ 0Þ is related to chaos. Instead, at J ¼ 0 we find N
decoupled core CFTs, and we expect

lim
t1;t2→∞

WRðt1; t2ÞjJ¼0 ∼
1

N
exp½þλ0Lðt1 þ t2Þ=2� ð12Þ

for some λ0L. Note that the CFTs are decoupled and so λ
0
L is

a property of a single core CFT. However, we emphasize
that it is not a chaos exponent in a single core CFT (as we
take t1, t2 to be larger then any timescale of the core CFT);
in fact, for unitary theories in two dimensions it is always
nonpositive, λ0L ≤ 0 [27].
Surprisingly, under reasonable physical assumptions it

can be shown that λkerL ðJ ¼ 0þÞ and λ0L are equal [26]. This

FIG. 3. (a) The kernel K and initial diagram F0 for general
disordered CFTs. Red lines denote full propagators G, and black
dots denote insertions of the disorder interaction, with q − 2 red
propagators between each pair. (b) Examples of correlation
functions n0s. Dashed lines correspond to external points, while
solid lines are connected via Σ’s defined in Fig. 2(a).
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amounts to showing that the integral (10) diverges for λ ≤
λ0L due to the large (negative) t3, t4 regime of the integrand.
Putting these pieces together, we claim that λkerL ðJÞ satisfies

λkerL ðJ ¼ 0þÞ ¼ λ0L: ð13Þ

The lhs is calculated through the kernel equation kRðλÞ ¼ 1
in the limit J ¼ 0þ, and the rhs is a property of the core
CFT. We can interpret the result by noticing that λ0L
describes the core CFT double-commutator behavior at
large timescales. At arbitrarily weak coupling this behavior
seems to control the 1 ≪ t ≪ logN behavior of the
disordered theory double commutator. The result is strik-
ing: in order to determine the type of transition into chaos, it
is enough to find (the sign of) λ0L in a single core CFT.
Below we give one example for each type of transition into
chaos. In both cases we find that our conjecture (13) holds.
Examples of the onset of chaos.—Disordered generalized

free fields: We now discuss our first class of examples
with exactly marginal chaos, which are the disordered
generalized free fields in one dimension and in two
dimensions. Generalized free fields (GFFs) are nonlocal
theories with no energy-momentum tensor, but can be
obtained by specific large-flavor limits of local theories,
and are good toy models for more complicated theories.
Conformal invariance allows us to set the inverse temper-
ature to be β ¼ 2π in the following.
In one dimension, the generalized free fermion model is

called the “cSYK” model and was introduced in [12].
Explicitly, the action is

S ¼ S0 þ SSYK ð14Þ

with

S0 ¼ −Δ
Xn
i¼1

Z
dτ1dτ2 χiðτ1Þ

sgnðτ1 − τ2Þ
jτ1 − τ2j2−2Δ

χiðτ2Þ;

SSYK ¼ i
q
2

q!

Xn
i1;…;iq¼1

Z
dτ Ji1i2…iqχi1χi2 � � � χiq : ð15Þ

Here, Ji1…iq are Gaussian random variables with vari-
ance hJ2i1…iq

i ¼ ½J2ðq − 1Þ!=Nq−1�. Choosing Δ ¼ 1=q,

the deformation becomes classically marginal, and it is
argued in [12] that it is exactly marginal at leading order
in 1=N.
The two- and four-point functions of χi for this model

were found in [12]. It is simple to extend the results also to
the double commutator. One finds that the corresponding
retarded kernel KcSYK

R has eigenvalues

kcSYKR ðλÞ¼
�

b̄ðJÞ
b̄ðJ→∞Þ

�q Γð3−2ΔÞΓð2ΔþλÞ
Γð1þ2ΔÞΓð2−2ΔþλÞ ; ð16Þ

where b̄ðJÞ solves the equation

b̄q

1−2b̄
¼ 1

J2ψð1−ΔÞψðΔÞ; ψðΔÞ≡2cosðπΔÞΓð1−2ΔÞ:

ð17Þ

λkerL is found by taking the largest solution to
kcSYKR ðλÞ ¼ 1. The result for Δ ¼ 1=4 appears in Fig. 4,
and similar results apply for other Δ.
At any Δ, λkerL approaches the maximal value λL ¼ 1 [28]

at large J as in the SYK model. More relevant to this study,
λkerL approaches −2Δ at J ¼ 0 (corresponding to the dashed
red line), and so becomes negative at small J for anyΔ > 0.
As discussed above, we cannot identify λkerL with λL when
the former is negative, but we immediately learn that
λL ¼ 0 in this regime. We thus conclude that there is no
chaos at small enough J, corresponding to λL denoted by
the solid red line. We thus find a discontinuous transition
into chaos, as in Fig. 1(b). We also comment that the long
time exponent λ0L of a single core CFT is equal to λ0L ¼
−2Δ, which matches λkerL ðJ ¼ 0þÞ, and so the conjecture
(13) is obeyed.
The same analysis can be done for disordered GFFs in

two dimensions. In this case we choose to work with
N ¼ 2 SUSY GFFs, since this results in an exact con-
formal manifold even at finite N. The model consists of N
generalized free chiral superfields Φi of dimension
Δ ¼ 1=q, coupled via the superpotential

W ¼
XN

i1≠…≠iq

Ji1…iqΦi1…Φiq : ð18Þ

The computation is very similar, and the results appear in
Fig. 4. At large enough J, the chaos exponent for any Δ
approaches the result in the two dimensional SUSY
versions of the SYK model [6,9]. In addition, we again
find that λkerL approaches −2Δ as J → 0þ, and so for small
enough J λkerL is negative for any Δ > 0. As a result, we
again find a discontinuous transition into chaos for any

0.01 1 100 104 J

0.5

0.5

1.0
L

QM GFFs

2d GFFs

FIG. 4. The chaos exponent λLðJÞ at Δ ¼ 1=4 for disordered
GFFs in QM and for SUSY disordered GFFs in two dimensions.
Dashed lines represent λkerL and solid lines represent λL.
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Δ > 0. We also find once again that the conjecture (13) is
obeyed.
Disordered minimal models: We now discuss the

disordered 2D N ¼ 2 minimal models. A single core
CFT in this case consists of anN ¼ 2 SUSY Aq−1 minimal
model, which can be represented by a single chiral super-
field Φ and superpotential W ¼ Φq. The full disordered
theory is then

W ¼
XN
i¼1

Φq
i þ

X
i1≠…:≠iq

Ji1…iqΦ̃i1…Φ̃iq : ð19Þ

We emphasize that we interpret this equation in conformal
perturbation theory in J around N copies of the Aq−1

minimal model, where Φ̃ is the chiral operator of dimension
1=q, which appears in Aq−1. Since the CFT at J ¼ 0 has no
continuous non-R global symmetries, every classically
marginal operator is exactly marginal [29–31], and so each
deformation Ji1…iq for i1 ≠ … ≠ iq is exactly marginal.
Thus each realization of the model is conformal, and as a
result averaged correlators of Φ̃i will also be conformal
(even at finite N).
We can now attempt to compute λLðJÞ in perturbation

theory. This computation is generically difficult, and so we
focus on the caseq ¼ 3, where a coreCFThas central charge
c ¼ 1 and so corresponds to the free compact boson at a
specific radius. We can identify the operators Φ̃i in terms of
vertex operators of the c ¼ 1 boson, and as a result we can
read off all n-point functions of the Φ̃i. Using this result to
compute the leading contribution to the retarded kernel at
small J given in (10), we find that at small J the exponent λkerL
approaches zero. As a result, we expect a continuous
transition into chaos in this model, as in Fig. 1(a). In
particular, the value of λ0L in a single A2 minimal model
is also zero, so that the conjecture (13) is again obeyed.
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