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The theory of bipartite entanglement shares profound similarities with thermodynamics. In this Letter we
extend this connection to multipartite quantum systems where entanglement appears in different forms with
genuine entanglement being the most exotic one. We propose thermodynamic quantities that capture a
signature of genuineness in multipartite entangled states. Instead of entropy, these quantities are defined in
terms of energy—particularly the difference between global and local extractable works (ergotropies) that
can be stored in quantum batteries. Some of these quantities suffice as faithful measures of genuineness and
to some extent distinguish different classes of genuinely entangled states. Along with scrutinizing
properties of these measures we compare them with the other existing genuine measures, and argue that
they can serve the purpose in a better sense. Furthermore, the generality of our approach allows us to define
suitable functions of ergotropies capturing the signature of k nonseparability that characterizes qualitatively
different manifestations of entanglement in multipartite systems.
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Introduction.—Thermodynamics is a framework that
deals with the ordering of abstract states connected by
abstract processes. Due to their metatheoretic character,
thermodynamic laws have withstood several paradigm
shifting scientific revolutions and evolved to encompass
general relativity and quantum mechanics. Although it
started as a phenomenological theory of heat engines, a
rigorous axiomatic framework, motivated by the seminal
work of Carathéodory [1], has been formulated initially by
Giles [2], and more recently by Lieb and Yngvason [3–5].
As thermodynamics has a deep-rooted connection with
information theory [6–11], its axiomatic formulation finds
profound similarities with the theory of quantum entangle-
ment [12–14]. Like the second law of thermodynamics that
prohibits the complete conversion of heat (disordered form
of energy) to work (ordered form of energy) in a cyclic
process, the theory of entanglement is also governed by a
no-go that forbids the creation of entanglement among
spatially separated quantum systems under local operations
and classical communication (LOCC). This qualitative
analogy goes even deeper—in accordance with thermo-
dynamic reversibility, the interconversion among pure
bipartite entangled states is reversible under LOCC in
the asymptotic limit [15–17]. Furthermore, the rate of
interconversion is quantitatively determined by von
Neumann entropy, which has a direct relation with thermo-
dynamic entropy [18–21]. For such states, the von
Neumann entropy of the reduced marginal, in fact, serves
as the unique quantifier (measure) of entanglement [17].
Although the reversibility of entanglement theory breaks
down for mixed states [22–25], it does not cancel the

analogy between entanglement theory and thermodynam-
ics; rather, it acts as a constitutive element [23].
In this Letter we ask the question how far the analogy

between thermodynamics and entanglement theory can go
when multipartite systems are considered. This question is
quite pertinent, since for such systems classification of
quantum states becomes much richer as compared with the
separable vs entangled dichotomy of bipartite scenario.
Depending on how different subsystems are correlated
with each other, qualitatively different classes of entangled
states are possible when more than two subsystems are
involved. Among these, the most exotic one is the genu-
inely entangled state that first appears in the seminal
Greenberger–Horne–Zeilinger (GHZ) Version of the Bell
test [26,27]. Subsequently, it has been shown that genuinely
entangled states can also be of different types [28–30].
Identification, characterization, and quantification of genu-
ine entanglement are of practical relevance, as they find
several applications [31–39], and accordingly different
quantifiers have been suggested [40–46].
In this Letter, we propose thermodynamic quantities that

capture a signature of genuineness in multipartite states.
Unlike the bipartite pure states, where entanglement is
captured through entropic quantity, our proposed measures
are defined in terms of internal energy of the system. In
particular, the ergotropic gap—the difference between the
extractable works from a composite system under global
and local unitary operations, respectively—plays a crucial
role to define these measures. We show that suitably
defined functions of this quantity—minimum ergotropic
gap, average ergotropic gap, ergotropic fill, and ergotropic
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volume—can serve as good measures of genuineness for
multipartite systems. In fact, one can come up with
measures that capture the notion of k separability for
arbitrary multipartite systems [13]. Apart from theoretical
curiosity these measures are of special interest as there are
several proposals for quantum batteries to store ergotropic
work [47–53]. By comparing strengths and weaknesses of
these newly proposed measures with the other existing
genuine measures, we show that the ergotropic measures
show superiority.
Preliminaries.—A pure state of a multipartite system

consisting of n subsystems is described by a vector
jψiA1���An

∈⊗n
i¼1 HAi

, where HAi
be the Hilbert space

associated with the ith subsystem, and for finite dimensional
cases they are isomorphic to complex Euclidean space Cdi .
Such a state is called k separable if it can be expressed
as jψi½k� ¼ jψiX1

jψiX2
� � � jψiXk

, where Xjs’ are nonzero
disjoint partitioning of n parties, i.e., Xj ∩ Xj0 ¼ ∅&

∪k
j¼1 Xj ¼ fA1;…; Ang. A mixed state ρ ∈ Dð⊗n

i¼1 HAi
Þ

is called k separable if it can be expressed as the convex
mixture of k-separable pure states, i.e., ρ½k� ¼P

l pljψ li½k�hψ lj; Dð⋆Þ denotes the set of density operators
acting on the Hilbert space. Note that partitionings of the
pure states appearing in the convex decomposition of ρ½k�
need not to be fixed. Denoting the convex set of k-separable
states as S½k�, we have the set inclusion relations
S½n� ⊊ S½n−1� ⊊ � � � ⊊ S½2� ⊊ D. The set of states DnS½k�
are called k nonseparable, and 2 nonseparable states, i.e.,
states in DnS½2�, are also called n-partite genuinely
entangled. To be a good quantifier or measure of k non-
separability, a functionE½k�∶D → R≥0 is supposed to satisfy
the following properties: (i) E½k�ðρÞ ¼ 0; ∀ ρ ∈ S½k�;
(ii) E½k�ðρÞ > 0; ∀ ρ ∈ SnS½k�; (iii) E½k�ðPi piρiÞ ≤P

i piE½k�ðρiÞ, where fpig is a probability distribution
and ρi ∈ S½k�; and (iv) E½k�ðρÞ ≥ E½k�ðσÞ whenever the state
σ can be obtained from the state ρ under the LOCCoperation
with all of the subsystem being spatially separated.
Condition (ii) can be relaxed as E½k�ðρÞ ≥ 0, and in such a
case the measure is not faithful. For k ¼ 2 we will use the
notation E½k� ≡ EG, an it captures genuine entanglement.
Two such measures E and E0 are said to be equivalent
whenever EðρÞ ≥ EðσÞ ⇔ E0ðρÞ ≥ E0ðσÞ for all pairs
of ρ, σ. For a detailed review of such measures we refer
to Refs. [54–58]. In the following we rather briefly recall the
concept of ergotropy that will be relevant for us to define
thermodynamic measures of multipartite entanglement.
The study of work extraction from an isolated quantum

system under a cyclic Hamiltonian process dates back to
the late 1970s [59,60]. The aim is to transform a quantum
system from a higher to a lower internal energy state,
extracting the difference in internal energy as work.
The optimal work, termed as ergotropy, is obtained when
the system evolves to the passive state [61]. Given the

system Hamiltonian H ¼ P
d
i¼1 eijϵiihϵij, with jϵii being

energy eigenstate having the energy eigenvalue ei, and
given the initial state ρ ∈ DðCdÞ of the system, ergotropic
work extraction is given by

WeðρÞ ¼ TrðρHÞ −min
U

TrðUρU†HÞ ¼ Tr½ðρ − ρpÞH�

where the passive state ρp, being the minimum energetic
state, takes the form ρp ¼ P

d
i¼1 λijϵiihϵij, with λi ≥ λiþ1

where ei ≤ eiþ1 ∀ i ∈ f1;…; dg. During the recent past
the study of ergotropy received renewed interest for
multipartite quantum systems [62–73]. For such systems
different kinds of ergotropic works can be extracted.
For instance, from a bipartite state ρAB ∈ DðCdA ⊗ CdBÞ
one can extract global and local ergotropic works Wg

eðρABÞ
and Wl

eðρABÞ respectively by applying joint unitaries and
product unitaries on the system. The difference of these two
ergotropic works is termed as ergotropic gap ΔAjBðρABÞ,
which for pure bipartite states has been established
as an independent LOCC monotone rather than von
Neumann entropy, and furthermore it has been shown to
satisfy the criteria of a bipartite entanglement measure
[68,70,71].
Ergotropy and multiparty entanglement.—For multipar-

tite systems different subgroups of the parties can come
together, and accordingly different types of ergotropic
works can be extracted from the system (see Fig. 1). For
an n-party system we can define the fully separable

ergotropic gap ΔðnÞ
A1j���jAn

which is the difference between

global ergotropy Wg
e obtained when the parties can apply

joint unitary all together and fully local ergotropy WA1j���jAn
e

obtained through local unitaries on the respective sub-
systems. For a system governed by the Hamiltonian

FIG. 1. Different amounts of ergotropic work can be extracted
from a multipartite entangled quantum state: (a) local ergotropic

work WAjBjC
e ≡Wl

e, (b) biseparable ergotropic work WXjXC

e , with
X ∈ fA; B; Cg, and (c) global ergotropic work Wg

e. In general,

Wl
e ≤ WXjXC

e ≤ Wg
e, where strict inequalities hold for genuinely

entangled states.
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HA1���An
¼ P

n
i¼1 H̃Ai

(H̃Ai
≡ Id1���di−1 ⊗ HAi

⊗ Idiþ1���dn ) and
prepared in a pure state jψiA1���An

∈⊗n
i¼1 C

di , it turns out
that

ΔðnÞ
A1j���jAn

ðjψiÞ ¼
Xn
i¼1

TrðρpAi
HAi

Þ; ð1Þ

where ρpAi
is the passive state of the corresponding

subsystem. Here and throughout the Letter, without loss
of any generality, we associate zero energy to the lowest
energetic state jϵ0i. Passive state energy being the LOCC

monotone makes the quantity ΔðnÞ
A1j���jAn

a LOCC monotone

(see the Supplemental Material [74]). Furthermore, it can
be defined as a measure of multipartite entanglement by
generalizing it for the mixed state through convex roof
extension. For instance, expressing a 3-qubit pure state
in generalized Schmidt form [29], jψiABC ¼ λ0j000i þ
λ1eιφj100i þ λ2j101i þ λ3j110i þ λ4j111i, with λi ≥ 0 &P

i λ
2
i ¼ 1; 0 ≤ φ ≤ π, we obtain

Δð3Þ
AjBjCðjψiÞ ¼

1

2

�
Δð2Þ

AjBC þ Δð2Þ
BjCA þ Δð2Þ

CjAB
�
:

Here Δð2Þ
AjBC denotes the biseparable ergotropic gap across

the AjBC cut, i.e., ΔAjBC ≔ Wg
e −WAjBC

e (mutatis mutandis
for the other terms). The explicit expressions read as

Δð2Þ
AjBC ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λ20½1 − ðλ20 þ λ21Þ�

q
; ð2aÞ

Δð2Þ
BjCA ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4½λ20ðλ23 þ λ24Þ þ α�

q
; ð2bÞ

Δð2Þ
CjAB ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4½λ20ðλ22 þ λ24Þ þ α�

q
; ð2cÞ

where α ≔ jðλ1λ4eιφ − λ2λ3Þj2. It is also immediate that

Δð3Þ
AjBjC is zero for fully product state.
Ergotropy and genuine entanglement.—The quantity

Δð3Þ for tripartite systems and more generally ΔðnÞ for
n-partite systems, despite capturing the signature of multi-
partite entanglement, does not capture genuineness. In fact,
ΔðnÞ can take a maximum value for some nongenuine
entangled states (see the Supplemental Material [74]). At
this point the biseparable ergotropic gap Δð2Þ becomes
crucial which for an arbitrary n-partite system can be

defined as Δð2Þ
XjXC ≔ Wg

e −WXjXC

e , where WXjXC

e denotes the

ergotropic work obtained across XjXC cut with X being a
nonzero subset of the parties and XC denoting the comple-
ment set of parties. For a pure state jψiA1���An

∈⊗n
i¼1 C

di a
straightforward calculation yields

Δð2Þ
XjXCðjψiÞ ¼ TrðρpXHXÞ þ Trðρp

XCHXCÞ; ð3Þ

where H⋆ and ρp⋆ denote the Hamiltonian and the passive
state of the corresponding partition. Although the bise-
parable ergotropic gap turns out to be a LOCCmonotone, it

does not capture genuineness, as Δð2Þ
X1jXC

1

can take a nonzero

value even when the state is separable across some X2jXC
2

partition, where X1 ≠ X2. However, this quantity leads us
to define several genuine entanglement measures as
listed below.
(i) Minimum ergotropic gap ðΔG

minÞ: It is defined as the
minimum among all possible biseparable ergotropic gaps,
i.e., for jψiA1���An

∈⊗n
i¼1 C

di

ΔG
minðjψiÞ ≔ min fΔð2Þ

XjXCðjψiÞg;

where minimization is over all possible bipartitions fXjXCg
of the parties. Clearly, this is for any pure biseparable state
ΔG

min ¼ 0, whereas for pure genuine entangled states it takes
nonzero values. For a 3-qubit system, by analyzing the
expressions in Eq. (2) it turns out that ΔG

min yields the
maximum value for the maximally entangled GHZ (in short
ME-GHZ) state and distinguishes it from theW class states
[28]. Therefore according to the criterion imposed in
Ref. [46] this measure can be called a “proper” measure
of genuineness. In fact this result is quite generic. For any n-
qubit system the canonical GHZ state jGHZni ¼ ðj0i⊗n þ
j1i⊗nÞ= ffiffiffi

2
p

gives a maximum value for ΔG
min (see the

Supplemental Material [74]) indicating superiority of this
state over the other classes of genuine entangled states.
Furthermore, for the ðC2Þ⊗3 system, it can be shown that

CXjXC ¼ Δð2Þ
XjXCð2 − Δð2Þ

XjXCÞ, where CXjXC is the concurrence

across XjXC cut for X ∈ fA;B; Cg. In this case ΔG
min is

equivalent to another genuine measure called “genuinely
multipartite concurrence” (GMC) defined as the minimum
of C2

XjXC [55].

Importantly, the minimum ergotropic gap carries a
physical meaning as it quantifies the least collaborative
advantage in ergotropic work extraction when all the three
parties instead of any two of them come together. A
drawback of this measure is that the ordering imposed
by it is not ideal, as two states with an equal minimum value
can have different ergotropies in other bipartitions which
evidently tells us that the genuine entanglement of the states
must be different.
The measure ΔG

minðjψiÞ can be extended to mixed states
via convex roof extension and accordingly for a state
ρA1���An

∈ Dð⊗n
i¼1 C

diÞ, the expression for minimum ergo-
tropic gap becomes
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ΔG
minðρA1���An

Þ ≔ min
fpj;ρjg

�X
j

pjΔG
minðρjÞ

�
;

where each fpj; ρjg is a decomposition of the state ρA1���An

and the minimization is over all possible decompositions. A
similar convex roof extension applies for all the measures
introduced hereafter.
(ii) Genuine average ergotropic gap ðΔG

avgÞ: Instead of
the minimum, one can consider the average of all bisepar-
able ergotropic gaps. However it is not a genuine measure
as biseparable states can yield a nonzero value. To define a
genuine measure for an n-party pure state jψiA1���An

∈⊗n
i¼1

Cdi we consider the following quantity:

ΔG
avgðjψiÞ ≔

ΘðQXΔ
ð2Þ
XjXCðjψiÞÞ

2ðn−1Þ − 1

X
X

Δð2Þ
XjXCðjψiÞ;

where X ranges over all possible bipartitions (2ðn−1Þ − 1 in
number for the n-party system) and ΘðZÞ ¼ 0 for Z ¼ 0;
otherwise, ΘðZÞ ¼ 1. Once again, for the three-qubit
system this measure is “proper” as it distinguishes ME-
GHZ from the W class. Importantly, this measure is
inequivalent to ΔG

min (see the Supplemental Material
[74]). In fact, two genuine states having the same value
for one measure can have different values for the other one.
This is a quite important observation, as for such a pair of
states the measure yielding different values puts a nontrivial
restriction on their interconvertibility under LOCC, while
the other remains silent.
(iii) Ergotropic fill ðΔG

FÞ: Motivated by the genuine
measure of “concurrence fill” recently introduced for three-
qubit systems [46], we can define ergotropic fill for such
systems as follows:

ΔG
FðjψiÞ ≔

1ffiffiffi
3

p
��X

X
Δð2Þ

XjXC

	
2

− 2ð
X

X
ðΔð2Þ

XjXCÞ2Þ

1

2

;

where X ∈ fA; B;Cg. Ergotropic fill turns out to be
independent from concurrence fill [46], GMC [55], and
genuine average ergotropic gap (see the Supplemental
Material [74]). However, there is ambiguity regarding
the monotonicity of this measure under LOCC [58].
Although this measure might be generalized for a four-
qubit system, presently we have no idea regarding its
generalization for arbitrary multipartite systems.
(iv) Ergotropic volume ðΔG

V Þ: For an n-party state
jψiA1���An

∈⊗n
i¼1 C

di we can define the normalized volume

ΔG
V of an N-edged hypercuboid with sides Δð2Þ

XjXCðjψiÞ as a
genuine measure of entanglement, i.e.,

ΔG
V ðjψiÞ ≔

�YN
X¼1

Δð2Þ
XjXCðjψiÞ

	1
N

; N ¼ 2ðn−1Þ − 1:

Each edge of the hypercuboid being a LOCC monotone
makes the normalized volume the same. While for any pure
genuine entangled states the volume is nonvanishing, it is
zero for the nongenuine state as at least one of the edges
is zero.
Although ergotropic volume has no direct physical mean-

ing, it turns out to be the lower boundof the average ergotropic
gap, i.e.,ΔG

V ≤ ΔG
avg for an arbitrarymultipartite state (see the

Supplemental Material [74]). Interestingly, for an arbitrary
multipartite system among the different states having the
same average ergotropic gap the state with equal entangle-
ment across all possible bipartite cuts yield the maximum
ergotropic volume and is rated as themost entangledone. This
follows from the fact that the geometric mean of a set of
numbers with a constant arithmetic mean is the maximum
when each number is equal to the arithmetic mean.
For a 3-qubit system ΔG

V takes a maximum value of 1 for
the ME-GHZ, whereas it takes a value of 2

3
for the maximally

W state. In fact, we have obtained the expression ΔG
V for a

generic 3-qubit pure state. It turns out that for some particular
ranges of Schmidt coefficients generalized GHZ is more
genuinely entangled than maximalW states and hence all the
W class states. On the other hand, for a certain range of
Schmidt coefficients ΔG

V of extended GHZ states becomes
less than that of the maximal W state. Furthermore, with
some examples we also find that ΔG

V is an independent
genuine measure than GMC, minimum ergotropic gap,
genuine average ergotropic gap, ergotropic fill, and con-
currence fill (see the Supplemental Material [74]). More
interestingly, we discuss examples of three-qubit entangled
states where concurrence fill cannot order their genuineness
but ergotropic volume can. Although for the three-qubit
system ergotropic volume is not a smooth function with
respect to the generalized Schmidt coefficients, it turns out to
be smooth with respect to the biseparable ergotropic gaps.
Ergotropy and k nonseparability.—So far we have seen

that a fully ergotropic gap captures the signature of
multipartite entanglement, whereas suitably defined func-
tions of a biseparable ergotropic gap turn out to be a good
measure of genuine entanglement. As already mentioned,
for multipartite systems manifestations of quantum
entanglement can be most generally described by k non-
separability with multipartite entanglement and genuine
entanglement being the two extreme cases. To capture the
notion of k nonseparability here we propose the concept of

a k-separable ergotropic gap ΔðkÞ
X1j���jXk

≔ Wg
e −WX1j���jXk

e ,

where WX1j���jXk
e denotes the ergotropic works when n

different parties are partitioned as X1j � � � jXk. For an
arbitrary state jψiA1���An

the expression for the k-separable
ergotropic gap reads as

ΔðkÞ
X1j���jXk

ðjψiÞ ¼
Xk
j¼1

TrðρpXj
HXj

Þ; ð4Þ
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where ρpXj
and HXj

are the passive state and the

Hamiltonian of the associated partition, respectively.
Clearly k ¼ n and k ¼ 2 correspond to Eq. (1) and
Eq. (3) respectively. Note that, if the k-separable ergotropic
gap for jψi is zero for a given k partition, say the partition
X1j � � � jXijXiþ1j � � � jXk, then the (k − 1)-separable ergo-
tropic gap for the state will be zero if any two subgroups of

the parties are together, i.e., ΔðkÞ
X1j���jXijXiþ1j���jXk

ðjψiÞ ¼ 0

implies Δðk−1Þ
X1j���jXiXiþ1j���jXk

ðjψiÞ ¼ 0. However, a zero k-sepa-

rable ergotropic gap for a given k partition need not imply a
zero k-separable ergotropic gap for a different k partition.

In other words,ΔðkÞ
X0
1
j���jX0

k
ðjψiÞ can take a nonzero value even

when ΔðkÞ
X1j���jXk

ðjψiÞ ¼ 0. This fact restrains the quantity

ΔðkÞ
X1j���jXk

to be a good measure of k nonseparability.

However, following the same technique as done for
genuineness it is possible to define suitable functions
of the k-separable ergotropic gap that turn out to be
good measures of k nonseparability. In the Supplemental

Material [74] we discuss a few such quantities—Δ½k�
min;Δ

½k�
avg,

and Δ½k�
V that for k ¼ 2 boil down to ΔG

min;ΔG
avg, and ΔG

V ,
respectively.
Discussion.—Genuine entanglement represents proto-

typical features of multipartite quantum systems. Apart
from their foundational importance [26] they find several
applications [31–39], and they are also crucial for the
emerging technology of quantum Internet [79,80]. Here we
have proposed several measures of genuine entanglement
based on thermodynamic quantities. The correspondence
between thermodynamics and entanglement theory is not
new as information theory makes a link between bipartite
entanglement and thermodynamics through the abstract
concept of entropy. Importantly, the connection established
between genuine entanglement and thermodynamics in this
Letter is much more direct as it does not invoke entropy;
rather it is based on internal energies or ergotropic works
of the system. Ergotropic work being an experimentally
measurable quantity, even under ambient conditions, makes
this connection more interesting. In particular, we have
introduced four different measures for genuine entangle-
ment among which ergotropic volume has been inferred
to perform better than the other three as well as the
previously existing measures. Importantly, ergotropic vol-
ume also captures a physical meaning up to some degree
while still maintaining the integrity as a genuine multi-
partite entanglement measure without any ad-hoc condi-
tions. Furthermore, we have shown that based on ergotropic
quantities it is also possible to define measures of k
nonseparability that signify qualitatively different manifes-
tations of entanglement for multipartite systems.
As for the future, possible experimental realizations of

the proposed measures would be quite interesting. It would
be instructive to explore the multiqubit systems, more

particularly the three-qubit system, first. Another possible
study would be to see how the ergotropic gap decreases
when more and more restrictions are imposed on the
collaboration among the parties, as this would give an
idea whether or not the cost of coming together pays off
significant increment in work extraction. It would also
be interesting to capture the signature of entanglement
depth [81] of an multipartite state through the ergotropic
approach explored in this Letter. Finally, it would also be
interesting to see how our approach can be generalized to
study other forms of correlation in mutipartite systems; a
closely related study was recently made for bipartite
systems in Ref. [73].
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