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In open quantum systems, the precision of metrology inevitably suffers from the noise. In Markovian
open quantum dynamics, the precision can not be improved by using entangled probes although the
measurement time is effectively shortened. However, it was predicted over one decade ago that in a non-
Markovian one, the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelga,
and Plenio, Phys. Rev. Lett. 109, 233601 (2012)]. In this work, we apply a recently developed quantum
simulation approach to experimentally verify that entangled probes can improve the precision of metrology
by the QZE. Up to n ¼ 7 qubits, we demonstrate that the precision has been improved by a factor of n1=4,
which is consistent with the theoretical prediction. Our quantum simulation approach may provide an
intriguing platform for experimental verification of various quantum metrology schemes.
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Introduction.—Quantum metrology utilizes quantum
entanglement and coherence to enhance the measurement
precision over classical metrology [1–3]. In the absence of
noise, the precision of classical metrology scales as n−1=2,
which is limited by the central-limit theoremwith n being the
number of resources implemented in the measurements. In
contrast, quantum metrology can reach the Heisenberg limit,
scaling as n−1. However, in practice, any quantum system is
inevitably subject to decoherence which results from inter-
action with the environment [4]. Because of decoherence,
there will be no improvement in the measurement precision
over classicalmetrology, although themeasurement timemay
be effectively shortened [5]. In order to overcome this
shortcoming, various methods have been put forward, e.g.,
squeezing [6], purification [7], and one-way quantum-
computing-based teleportation [8]. It was shown that, instead
of maximally entangled states, partially entangled initial
states may reduce the error to some extent [5]. When the
system interacts with a specific bath with a band structure,
ideal precision may be retrieved as a result of the existence
of the bound state [9,10].When there is a correlation between
the baths for individual qubits, an auxiliary qubit can
be introduced to reach the Heisenberg limit [11–13].
Interestingly, the nonlinear interaction between the system
and the physical quantity to bemeasured is used to surpass the
Heisenberg limit [14–18]. However, the nonlinear interaction
may not be easily realized in practical measurements.

Then, a question naturally comes to our minds: Can we
figure out some practical method to improve the measure-
ment precision in the presence of noise? It is shown that
there are, generally, three stages in open quantum dynam-
ics, including the well-known exponential decay in the
intermediate stage [19]. However, in the first stage,
the open quantum system decays in a Gaussian way, where
the quantum Zeno effect (QZE) [20–26] happens. It has
been pointed out that due to the QZE, metrology using
maximally entangled states is superior to the one using
product states by a factor of n1=4 [27,28]. On the other
hand, recently, we have theoretically proposed and exper-
imentally demonstrated in a nuclear magnetic resonance
(NMR) platform, to simulate the quantum dynamics for
various Hamiltonians and spectral densities [29–31]. In
these works, the bath-engineering technique [32–35] ena-
bles a theoretically exact, fully controllable, and practically
efficient quantum simulation [36,37] approach. Using the
approach, we show that the non-Markovianity of the open
quantum dynamics should essentially be characterized
from both aspects of global and local points of view,
e.g., quantum mutual information vs quantum Fisher
information flows [31,38–40]. It is this theoretically exact
and fully controllable characteristic that enables us to
experimentally verify the quantum metrology scheme
proposed in Refs. [27,28], which requires homogeneity
of the qubits.
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Protocol.—The bath-engineering technique offers a way
to engineer arbitrary environments by modulating the
control field [32,33]. By applying a time-dependent mag-
netic field to the total system, we can artificially
add a spectral characteristic noise, so as to simulate an
arbitrary noisy environment. The Hamiltonian of the
total system can be written as HðtÞ ¼ HS þHSBðtÞ, where
HS ¼

P
m εmjmihmj þP

m≠n Jmnjmihnj is the system
Hamiltonian, and HSBðtÞ is the noise Hamiltonian to
simulate the system-bath (SB) couplings. When simulating
the pure-dephasing noise, cf. Fig. 1(a), the noise
Hamiltonian is HSBðtÞ ¼

P
m βmðtÞjmihmj. βmðtÞ’s are

stochastic errors generated by performing amplitude and
phase modulations on a carrier [29,30]

βmðtÞ ¼ αz
XJ

j¼1

ωjFðωjÞ cos ðωjtþ ψ ðmÞ
j Þ; ð1Þ

where αz is the amplitude of the dephasing noise, ωb (Jωb)
is the base (cutoff) frequency with ωj ¼ jωb, FðωjÞ
is the modulation function of a specific spectral character-

istic noise, and ψ ðmÞ
j ’s are a set of random numbers.

For a noise of Gaussian type, the average over the ensemble
is equivalent to the average over the time [41]. The

ensemble-averaged decoherence factor reads ΓðtÞ ¼
α2z

P
J
j¼1 FðωjÞ2sin2ðωjt=2Þ, as determined by the

power spectral density of the noise, which is the Fourier
transform of the second-order correlation function
hβmðtþτÞβmðtÞi [32,33].
We consider a system Hamiltonian HS ¼

P
n
k¼1 ω0σ

z
k=2,

which is subject to a pure-dephasing noise [27]. We
present an illustration for the case with a single qubit in
Fig. 1(a). Initially, the qubit is prepared at ðj0i þ j1iÞ= ffiffiffi

2
p

.
Afterwards, it unitarily evolves at the equator of the Bloch
sphere with rate ω0 þ β1ðtÞ. In order to mimic the pure
dephasing, we generate a large number of realizations with
the same initial state and obtain the final result by averaging
over the random ensemble with a different rate β1ðtÞ after a
second π=2 pulse. We assume a Drude-Lorentz spectral
density, i.e., JkðωÞ ¼ JðωÞ ¼ 2λγω=ðω2 þ γ2Þ, where λ is
the reorganization energy and γ is the relaxation rate.
A generic spectral density can be decomposed into a
summation of Lorentzian forms. The modulation function
then becomes FðωjÞ ¼ ½λγω0 cothðβωjÞ=ðω3

j þ γ2ωjÞ�1=2.
The quantum dynamics of the system is exactly described
by the time-local master equation [4,42]

∂

∂t
ρðtÞ ¼ −i½HS; ρ� þ

X

k

γkðtÞðσzkρσzk − ρÞ: ð2Þ

Note that γkðtÞ is explicitly dependent on time. According to
the bath-engineering technique, the ensemble-averaged de-
coherence rate is γkðtÞ ¼ ðα2z=2Þ

P
J
j¼1 ωjFðωjÞ2 sinðωjtÞ.

In Fig. 1(b), we present the quantum circuit for the
quantum metrology scheme for the product and entangled
states, respectively. For the former case, the probes are
prepared at ½ðj0i þ j1iÞ= ffiffiffi

2
p �⊗n and then evolve under the

unitary evolution U ¼ expð−i R t
0 dτ½HS þ

P
k βkðτÞσzk�Þ,

which will not induce entanglement between different
qubits but mimic the noise. Then, we perform the individ-
ual measurements on each qubit, respectively, since all
qubits are disentangled. However, for the latter case, since
the probes are initialized at the maximally entangled state
ðj0i⊗n þ j1i⊗nÞ= ffiffiffi

2
p

, we only perform a collective meas-
urement after the same U. For open quantum dynamics
governed by the master equation (2), the variances of the
measured frequency for the unentangled and entangled
probes are, respectively, δω2

0ju ¼ exp½2ΓðtuÞ�=ðnTtuÞ and
δω2

0je ¼ exp½2nΓðteÞ�=ðn2TteÞ, where ΓðtÞ ¼ R
t
0 γkðt0Þdt0

is the decoherence factor for a single qubit, and the
subscript uðeÞ refers to the unentangled (entangled) state.
The optimal times to perform the measurement are deter-
mined by 2tuγkðtuÞ ¼ 1 and 2nteγkðteÞ ¼ 1, respectively.
When the decoherence rate γkðtÞ ¼ c is time independent,
the variances δω2

0 ¼ 2ce=ðnTÞ for both initial states are
the same, although the optimal times are different, i.e., tu ¼
1=ð2cÞ vs te ¼ 1=ð2ncÞ. However, when the QZE occurs,
i.e., γkðtÞ ¼ 2ct, the variance for the unentangled probes is

(a)

(b)

FIG. 1. (a) Single-qubit Ramsey experiment for quantum
metrology under non-Markovian noise. The free precession is
governed by non-Markovian dynamics, which can be simulated
using the ensemble-averaging technique. This averaging can be
visualized in the Bloch sphere: A large number of identical initial
probes undergo phase diffusion owing to their different modu-
lated Hamiltonians, leading to an attenuation in amplitude for the
overall spin signal. This attenuation gives rise to the error in
quantum-metrology experiments. (b) Quantum circuits for multi-
qubit Ramsey experiment under non-Markovian noise with
unentangled and entangled probes, respectively. The evolution
U is the simulation of non-Markovian dynamics. For the case of
entangled probes, the readout is typically some collective
measurement [5,6].
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inferior to that for the entangled ones, as δω2
0ju ¼

2
ffiffiffiffiffi
ce

p
=ðnTÞ > δω2

0je ¼ 2
ffiffiffiffiffiffiffiffi
nce

p
=ðn2TÞ with tu¼ð4cÞ−1=2>

te¼ð4ncÞ−1=2. Hereafter, we shall give an introduction to
the experimental details.
Experiment.—The experiments are performed on a

Bruker 600 MHz spectrometer at room temperature. The
sample is 13C-labeled trans-crotonic acid dissolved in d6
acetone, which consists of three 1H and four 13C nuclear
spins, forming a seven-qubit quantum processor. The
molecular structure of the sample is shown in Fig. 2(a).
The internal Hamiltonian of this system can be described as

HNMR ¼ −
X7

i¼1

ωi

2
σzi þ

X7

i<j;¼1

π

2
Jijσ

z
iσ

z
j; ð3Þ

where ωi=2π is the Larmor frequency of the ith spin, and
Jij is the scalar coupling strength between spins i and j.
The corresponding parameters are listed in Fig. 2(a), as well
as the relaxation times T1 and T2.
Overall, the experiment aims to observe the enhance-

ment of quantum metrology with entangled probes under
the non-Markovian circumstance. This is demonstrated
using the Ramsey magnetometry, which typically contains
three major stages: (i) preparation of initial probe states,
(ii) accumulation of an energy-splitting dependent phase,

and (iii) measurement of that phase. In the following, we
will describe each stage in detail.
(i) Prepare the two types of probe states: the unentangled

probe jψ0iu ¼ ½ðj0i þ j1iÞ= ffiffiffi
2

p �⊗n, and the maximally
entangled probe jψ0ie ¼ ðj0i⊗n þ j1i⊗nÞ= ffiffiffi

2
p

. For the
unentangled probe, the processor is initialized to the
pseudopure state j0i⊗n (up to an identity matrix) from
the thermal equilibrium state ρ0 using the cat-state method
[45]. Followed by a 2-ms-shaped pulse to perform a
collective single-qubit rotation Ryðπ=2Þ on all qubits, the
system is prepared into jψ0iu with over 99% fidelity. The
pulse sequence can be found in the Supplemental Material
(SM) [43].
For the entangled probe, we directly start from the

thermal equilibrium ρ0, and eventually prepare the state
ρe ¼ j0i⊗nh1j þ j1i⊗nh0j with the aid of nearest-neighbor
scalar couplings and gradient-echo techniques [43], as
shown in Fig. 2(b). Despite it not being the exact form
of jψ0ie, the dynamics of ρe for the quantum metrology
purpose is the same since the frequency information is just
encoded in the phase accumulation of coherent terms [43].
In addition, the creation of ρe avoids regular initialization of
the pseudopure state, which reduces the sequence complex-
ity remarkably.
(ii) For the target system HS ¼ ðω0=2Þ

P
n
i¼1 σ

z
i with ω0

being the energy splitting to be measured, let the probes

(a)

(b)

FIG. 2. (a) Molecular structure and relevant parameters of the seven-qubit NMR processor. Chemical shifts (diagonal, Hz), scalar
coupling strengths (off-diagonal, Hz), and relaxation times (T1 and T2) are all listed in the table. (b) Pulse sequence for the 7-qubit
Ramsey experiment using the entangled probe under non-Markovian noise. To simulate the non-Markovian dynamics, the rotating
angles θjm are carefully designed by ensemble-averaging modulation. A step-by-step description of the sequence can be
found in the SM [43].
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precess unperturbed for a duration t under the non-
Markovian noise. This non-Markovian circumstance is
simulated by the aforementioned bath-engineering
technique. Explicitly, we introduce an additional time-
dependent Hamiltonian term in the form of Hm

SBðtÞ ¼P
n
i¼1 β

m
i ðtÞσzi , where βmi ðtÞ’s are stochastic errors subject

to Drude-Lorentz spectral density as shown in Eq. (1), and
m is the sampling number so as to approximate the non-
Markovian noise via the ensemble-averaging approach
[43]. So the total Hamiltonian in the mth experiment can
be written as HS þHm

SBðtÞ. Note that the evolution of this
Hamiltonian corresponds to a collective single-qubit rota-
tion about the z axis, which can be easily implemented in
most physical systems. In addition, this time-dependent
Hamiltonian can be discretized into time-independent
slices for experimental realization (here, we use 103

slices [43]). Regarding the experimental parameters, we
set ω0 ¼ 10 kHz and choosem ¼ 20 samples for ensemble
average, which can already approximate the non-
Markovian environment with a high precision [43].
(iii) Read out the accumulated phase. For the

unentangled probes, the final phase is encoded in each
individual qubit, so the readout only involves single-qubit
measurements, which is similar to the standard Ramsey
interferometry experiment. For the entangled probes, the
final phase is retained in the relative phase between
j00;…; 0i and j11;…; 1i, and we apply the multicoherence
measurement technique [46] to extract that phase. As
shown in Fig. 2(b), this technique involves a series of
elementary quantum gates, which can be extended to other
systems as well. Subsequently, the transition probabilities
are computed by averaging over the ensemble with m ¼ 20
samples to simulate the non-Markovian decay.

Results.—We have conducted Ramsey experiments for
n ¼ 2 ∼ 7 qubits. Taking the seven-qubit case as an
example, the transition probability PðtÞ is shown in
Fig. 3(a) for both the unentangled (top panel) and entangled
(bottom panel) probes. Compared to the unentangled case,
PðtÞ in the entangled case manifests a much faster
oscillation owing to the rapid accumulation (∼7 times)
of phase. We use the theoretical form

PðtÞ ¼ 1

2
½1 − cosðnω0tÞe−nΓðtÞ�; ð4Þ

to fit the experimental data which gives the energy-
splitting frequency ω0 and decoherence factor ΓðtÞ.
For the unentangled probes, the measured frequency is
ω0ju ¼ 9.871 kHz and the decoherence factor is Γu ¼
ð0.370� 0.029Þt2. For the entangled probes, the measured
frequency is ω0je ¼ 10.142 kHz and the decoherence
factor is Γe ¼ ð2.701� 0.138Þt2. The minimum standard
deviations of the frequencies are δω0ju ¼ 0.169�
0.003 kHz and δω0je ¼ 0.105� 0.001 kHz at the
optimal measurement times tu ¼ 0.797� 0.032 ms and
te ¼ 0.288� 0.003 ms, respectively. Hence, the ratio
of the sensitivity enhancement is r ¼ δω0ju=δω0je ¼
1.608� 0.035 ≈ 7

1
4, indicating that the entangled probes

are, indeed, superior to the unentangled ones under the non-
Markovian environment. Note that the readout of the NMR
experiment is from the ensemble average result, which
means the statistical error by repeating experiments is
almost negligible. So, in this work, the error bars represent
experimental uncertainties by error propagation from the
fitting uncertainties in Fig. 3(a); see SM for details [43].

(a) (b)

FIG. 3. (a) Dynamics of population PðtÞ for the unentangled (top panel) and entangled (bottom panel) probes. Blue curves are
obtained by numerically fitting the experimental data (yellow triangles) using Eq. (4), and red lines are envelopes with the form
ð1 − e−ΓðtÞÞ=2, which depicts the time-dependent decoherence factor ΓðtÞ. The star symbol represents the optimal measurement point
determined by the experiment. (b) Standard deviation δω0 of the measured frequency with respect to the variation of t. Dashed (solid)
curves are fitting results corresponding to the unentangled (entangled) probes for different numbers of qubits. Triangles and dots are the
optimal measurement points. The scaling behavior of these optimal times when changing n is shown in the inset.
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For the other numbers of qubits, the experimentally
measured frequencies ωu and ωe, in association with their
respective decoherence factors Γu and Γe, can be found in
SM [43]. The standard deviation of the estimated frequency
is obtained by processing the experimental data, as shown
in Fig. 3(b), where the dashed and solid lines are for the
unentangled and entangled probes, respectively. For the
unentangled probes, the optimal measurement time tu is
almost the same for different n’s and the minimum standard
deviation δω0ju is proportional to n−1=2. For the entangled
probes, te and δω0je decrease with the growth of n.
By varying the number of qubits, we compute the ratio
r ¼ δω0ju=δω0je to estimate the improvement of sensitivity
with the entangled probes; see the solid red curve in Fig. 4.
As predicted, the experimentally observed r scales as
r ∼ n1=4, which is the QZE limit. For comparison, we have
performed another group of experiments in the absence of
noise [43]. In this noiseless scenario, the ratio of sensitivity
r reaches the Heisenberg limit, scaling as r ∼ n1=2 by the
dashed red curve in Fig. 4.
In addition, we depict distinct tendencies of the mini-

mum standard deviation δω0je of the entangled probes
for non-Markovian and noiseless environments, respec-
tively. As shown in Fig. 4, with the growth in number of
qubits, experimental results show that δω0je ∝ n−3=4 for
the non-Markovian noise by the solid blue curve, while
δω0je ∝ n−1 for the noiseless case by the dashed blue
curve. Definitely, our high-precision experiment is suffi-
cient to verify that the measurement accuracy of the
entangled probes can reach the QZE limit under the
non-Markovian noise.

Conclusion.—We experimentally demonstrate that the
entangled probes can enhance the sensitivity of quantum
metrology by the QZE. When the coherence decays
quadratically with time, the entangled probes optimize
the time for performing the measurement. On the contrary,
when the decoherence rate is time independent, the
entangled probes cannot effectively improve the precision
but shorten the measurement time. We remark that, since
our quantum simulation approach can subtly engineer the
parameters of both the system and bath, it may provide an
effective platform for experimentally verifying various
quantum metrology schemes, e.g., achieving ideal preci-
sion by coupling to a bath with a band structure [9]. It can
also be implemented in other physical systems [32,47].
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