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Multiplicative Shot-Noise: A New Route to Stability of Plastic Networks
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Fluctuations of synaptic weights, among many other physical, biological, and ecological quantities, are
driven by coincident events of two “parent” processes. We propose a multiplicative shot-noise model that
can capture the behaviors of a broad range of such natural phenomena, and analytically derive an
approximation that accurately predicts its statistics. We apply our results to study the effects of a
multiplicative synaptic plasticity rule that was recently extracted from measurements in physiological
conditions. Using mean-field theory analysis and network simulations, we investigate how this rule shapes
the connectivity and dynamics of recurrent spiking neural networks. The multiplicative plasticity rule is
shown to support efficient learning of input stimuli, and it gives a stable, unimodal synaptic-weight
distribution with a large fraction of strong synapses. The strong synapses remain stable over long times but
do not “run away.” Our results suggest that the multiplicative shot-noise offers a new route to understand
the tradeoff between flexibility and stability in neural circuits and other dynamic networks.
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Introduction.—Many natural processes are triggered by
coincidences of two “parent” events. Examples include
firefly flash synchronization [1], effects of simultaneous
environmental stressors [2], applications of two-photon
microscopy [3], and stimulus-reward associations in
reinforcement learning [4,5]. In neuroscience, coactivation
of pre- and postsynaptic neurons plays a crucial role in
inducing synaptic plasticity [6,7], a primary mechanism
underlying learning and memory.

The parent processes are often described by event-based
models [8], among which the Poisson process is an
appealing starting point owing to its memoryless property.
Experimental studies show that the aforementioned coinci-
dence-based phenomena often cannot be accurately
described as sums over the parent shot-noise (Poisson)
processes [2,7]. Specifically, induction of long-term plas-
ticity was shown to depend strongly on the calcium flux
into the postsynaptic neuron [9,10]. This flux, in turn,
depends on coincident spiking activity of pre- and post-
synaptic neurons, and is well described by the product of
two shot-noise processes [7,11,12]. In contrast, most net-
work-level studies of spike-timing-dependent plasticity
(STDP) typically assume that the synaptic strength change
is the sum over contributions of spike pairs, ignoring
cooperative effects between spikes [13—17]. These models
often cannot reproduce realistic spiking activity observed
in vivo [18].

Motivated by the converging theoretical and experimen-
tal evidence, we propose a stochastic process whose
fluctuations are triggered by multiplicative interactions
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between two parent shot-noise processes [c,(7),a=1,2].
The rates of parent events are 4,, and their amplitudes a,, ;
are exponentially distributed with mean A,. Events are
referred to as “spikes,” adopting the neuroscience termi-
nology, but they may correspond to events in other
domains. Spike times are denoted {7,,} and may be
temporally correlated. We then have

dealt) __cald) N~ s 1
dt Ta +Z a,l ( a,l)' ( )
The decay timescales 7, define a window during which
coincidences can occur.

Our primary interest is a multiplicative shot-noise
process [denoted C(7) and henceforth referred to as the
coincidence detector], whose transient deviations from
baseline are driven by the product c¢; X ¢,, with decay
timescale 7z [Fig. 1(a)],

1) _%Mnc](ocz(r). 2)

The stochastic calculus of Poisson processes makes it
difficult to analyze their products [19]. In contrast, existing
nonlinear shot-noise models [20-23] are equivalent to
transformations of a single Poisson process and are not
suitable for studying statistics of coincidences.

We analyze the statistics of the coincidence detector
and apply these results to gain insights to a longstanding
problem in neuroscience: the stability of recurrent neuronal
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FIG. 1. Analytical approximation of multiplicative shot-noise

statistics. (a) An illustration of the process C, driven by the
product ¢; X ¢,. (b) The cumulative distribution function (CDF)
of C calculated through the method of moments (MM) [Eq. (4)]
matches simulations well at high firing rates. (c) Relationship
between the log expectation, mean, and variance of C [Eq. (5)].
Data collapse on a line for a range of firing rates and spike-time
correlations (p). (d) At low firing rates, the CDF given by MM
matches simulations well for C 2 n7:A;A,, but poorly for C — 0.
The heuristic MM matches the simulation over the entire range of
C. (e) Performance of heuristic MM for uncorrelated spike trains.
The errors, measured by KS distance, are < 0.2 for all firing rates.
See Ref. [24] for definition of p and KS distances for other
parameters.

networks subject to STDP [41]. Here, ¢, ¢, are calcium
transients induced by pre- and postsynaptic spikes, and C is
the total calcium flux, which triggers plasticity [7]. Based
on spiking network simulations and theoretical analysis of
a reduced model, we show that when individual synapses
in a recurrent network are subject to a nonlinear calcium-
based plasticity rule, the empirical macroscopic network
properties are reproduced (e.g., stable activity patterns,
unimodal heavy-tailed synaptic-weight distributions [42]).
Further, our results suggest that STDP in itself can support
representations that remain stable over a timescale of
hours, marking an important step toward understanding
the prolonged retention of spatial memories in the face of
plasticity and noise [43].

Statistics of multiplicative shot noise.—For simplicity, we
assume that the decay timescales of the parent processes are
identical, 7, = 7, = 7. This is consistent with calcium-
induced plasticity [7,44] and cases where the parent proc-
esses are generated by similar agents (e.g., firefly flashes [1]).

Solving Eq. (1) gives filtered spike trains [Fig. 1(a)].
Using these solutions, we evaluate C(¢) [Eq. (2)] at steady
state. When the parent processes are uncorrelated,

d lti=t2,jl R[mln(t] i )}
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Here, 6 = 7/7 is the ratio between timescales [Egs. (1) and

(2)], and < means “equal in distribution.” The natural
interpretations of the three factors in Eq. (3) are the
stochastic amplitudes of synaptic transmission, the tempo-
ral window for coincident spikes, and R(x) = e™¥/% —
e~/ describes the firing-rate-dependent accumulation of
multiple coincidences. Notably, R represents a departure
from summation over spike pairs [13—16]. Similar expres-
sions for temporally correlated spike trains appear in
Ref. [24].

We begin by formulating an analytical approximation of
P, the distribution of C. At steady state, the shot-noise
process [e.g., ¢, in Eq. (1)] follows a gamma distribution
[45,46] with shape and scale parameters 4,7, A,. We think
of the coincidences of the parent processes as events which
drive fluctuations of C. Therefore, we assume that P can be
approximated by a gamma distribution whose shape (k) and
scale (¢) parameters measure the effective rate and ampli-
tude of the coincident spikes.

We use the method of moments (MM), i.e., matching the
first and second moments of P to a gamma distribution, to
analytically estimate k, . We find, for uncorrelated spike
trains,

k — <C>2 _ /11&272
Var€) Tt
Var(C) A+ 1
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o= = 2<5+1 hos ) @

See Ref. [24] for expressions including correlations.

We show that MM [Eq. (4)] is highly accurate in the
high-firing-rate regime ((C) > nz¢A;A,) by comparing it
to numerical simulations [Fig. 1(e), above the blue line].
However, for low firing rates (i.e., 1;7,4,7 < 1, which
implies (C) < nzeA;A,) and particularly at C — 0, the MM
is inaccurate [Fig. 1(d)]. The reason is that for low firing
rates (and k < 1), the gamma probability density diverges
at 0. Such a singularity cannot be captured by the mean and
variance of Pg. Notably, either 4, or 4, being high suffices
for the MM to be accurate, because the high-rate process
provides a “background” on top of which the low-rate
process can trigger coincidences.

In some applications of our theory, it may be important to
accurately estimate P. at C — 0, in the low-firing-rate
regime. We obtain such an estimate by first noticing that
in this regime, the maximum-likelihood estimate of the
gamma distribution parameters (k, o) yields a good
approximation of P.. This estimate relies on the log-
expectation variable s = In(C) — (InC), which is indeed
sensitive to the singularity at C — 0. Next, we show that the
log expectation, the mean, and the variance of C obey a
simple relationship, irrespective of the firing rates and
correlation [Fig. 1(c)],
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ln< > =—-In2-2In(C) + b(8)[-(C)]7. (5)

Var(C)

where [x], = max(x,0), and b(9) is fit directly to simu-
lations. We find corrected shape and scale parameters k, &
by computing s via Eq. (5) and using standard maximum-
likelihood formulas [24]. We call this the “heuristic MM,”
and we use it when coincidences are rare (k < 1) and both
firing rates are small [max(4,7,4,7) < 1]. This approxi-
mation is accurate for all values of C, in the entire parameter
space we explored [Fig. 1(e)].

Network  stabilization by multiplicative  synaptic
plasticity.—We now leverage our results to study effects
of a multiplicative plasticity on network structure. In this
context, C represents the calcium influx into a neuron,
triggered by coincident pre- and postsynaptic spikes. Large
influx induces long-term potentiation (LTP, when C > 6,,),
while intermediate influx induces long-term depression
(LTD, 0, > C > 0,) [7.9,10]. Given the potentiation and
depression rates y, ; and thresholds @), 4, the synaptic-
weight dynamics are

dw

gy = 1rOC(1) =6,) =70(C(1) =0y) =T, =Ty (6)
Note that w has its lower bound at 0, and typically
7, > 7c. Based on our analytical approximation of

Pe, we compute the total potentiation/depression rates
T, [y,a/T (k)] f(id CH1e=€/5dC, which depend on

the spike-train properties and the plasticity rule
[Egs. (4), (5)].

Neuronal activity in vivo undergoes substantial firing-
rate fluctuations, generated by external input variability or
intrinsic dynamics [47]. Below, we formulate a mean-field
approximation, reducing the joint dynamics of neurons and
synapses and accounting for network structure, to the
effective dynamics of a pair of pre- and postsynaptic
neurons and the synapse connecting them. The statistical
properties of the reduced system recapitulate the network
behavior.

In the reduced model, we assume that the neurons’
firing rates (4;, 4,) are sampled from P; and have
correlation time 7, ~0.1-1 s. P; may depend on the
synaptic strength and will be determined self-consistently,
accounting for network interactions. During an interval 7',
the rates (4,,4,) are approximately constant, so the
weight change is Aw = T, /z,, x (', = T';). Its distribution
Pgep(Aw) is calculated from P, through Eq. (6) [Figs. 2(a)
and 2(b)]. Thus, the synaptic dynamics are reduced to a 1D
random walk on w > 0 [Fig. 2(c)] with weight-dependent
step-size distribution Pg.,. We identify its steady-state
distribution P,, with the synaptic-weight distribution of
the network. Importantly, for 7, ~ 1 s, Aw is not infini-
tesimal, so the small step-size approximation [13,14,48] is
invalid. Next, we use the mean-field approach to study
representative network architectures.

Weak synapses.—In this limit, the pre- and postsynaptic
firing rates (4;,4,) are sampled independently of the
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FIG. 2. Reduced model of synaptic-weight dynamics. (a),(b) Synaptic-weight change [(dw/d¢), Eq. (6)] arising from independent (a)
and equal (b) pre- and postsynaptic firing rates. In (a), the temporal correlation p = 0. The green line indicates 4; + 4, = 50 Hz.
(c) Example synaptic-weight trajectory, illustrating the memory time 7" and the maximum weight wy,,,. (d) Synaptic-weight distribution,
including analytical result for the tail behavior in the weak-synapse scenario. (Inset) Memory-time distribution of a synapse. (e),(f) In the
feed-forward (strong-synapse) scenario, the synaptic-weight (e) and memory-time (f) distributions have heavier tails. Also shown in
(e) is the potentiation-depression ratio a(w). (g) Joint distribution of (wp., 7). Strong synapses are preferentially protected from
forgetting. (h) Average memory time increases linearly with (L) /(L) in the independent case, and nonlinearly in the feedforward case.

See Ref. [24] for parameter values.
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synaptic weight w. Py, is further assumed to be discrete,
such that a synapse can be unchanged/potentiated/
depressed by fixed amounts Aw = 0, L,, —L, with prob-
abilities a, a,, a,. Equivalently, Pge,(Aw) = agd(Aw) +
a,6(Aw + Ly) + a,6(Aw — L ). Such a scenario would be
expected in a network switching between “high” and “low”
states. For illustration, we assume that L, /L, is an integer
(see Ref. [24] for more general analysis). We define
the potentiation-depression ratio a = a,L,/a,L,. When
depression dominates (@ < 1), using results for random
walks [49,50], P,, is unimodal, and its tail follows P, ~
h(B)e~P¥/La) \w > L ,. The factors f, h(3) were determined
by analyzing the moment-generating function of w [24]. We
find that the tail becomes heavier as overall potentiation and
depression are more closely balanced (ayL4 X @)L ), or as
L,/L, is larger with fixed a. Generally, when weight
changes (Aw) are non-negligible relative to the mean, the
distribution P,, is unimodal, and its tail behavior is sensitive
to the high-order statistics of the step-size distribution Py,
in contrast to the case of infinitesimal Aw [14].

To study the process of forgetting in the reduced model,
we envision a potentiated synapse with initial weight wy
representing a certain memory. The memory time 7 (wy) is
that synapse’s first passage time to 0. Analysis of the
random walk statistics [24] gives the average and tail
behavior of T(wy),
Wo

L

and  Pr(1) ~wor e 5. (7)

(Tl =
See Ref. [24] for expressions of k. Similarly to P, the
average memory time becomes longer and the tail becomes
heavier as L, /L, increases, with fixed a [Fig. 2(e)].
Strong synapses.—When synapses are strong [51,52], P,
becomes weight dependent. The postsynaptic neuron receives
feed-forward weighted presynaptic input (firing rate 4,
weight w) and background input from the rest of the network.
Both inputs switch between high and low firing rates. Here,
using the heuristic MM to compute Pg.,(Aw) requires
knowing how spike-time correlations depend on w and the
background input. This relationship is determined by matching
the postsynaptic neuron with a leaky-integrate-and-fire neuron
driven by presynaptic shot noise and background Gaussian
noise [24]. We then numerically evaluate P,,,, Py at steady state,
showing a substantially heavier tail when compared to the
independent case [while fixing the overall potentiation-
depression ratio ay = (a(w))p, , Figs. 2(e) and 2(f)].
Inspection of the joint distribution of the synaptic-weight
running maximum and the memory time (wy,,,, ') suggests
that strong synapses are specifically resistant to forgetting
[Fig. 2(g)]. Moreover, the average memory time increases
nonlinearly with the LTP-LTD amplitude ratio [Fig. 2(h)],
compared to an approximately linear increase in the
independent case [Eq. (7), again matching (a(w))p 1.

w

Similar results were observed in a reduced clustered
recurrent network model [24].

Taken together, in the regime where a small number of
inputs is sufficient to trigger a postsynaptic response, the
multiplicative plasticity rule supports a unimodal synaptic-
weight distribution in which strong synapses are preferen-
tially protected from turnover.

Spiking network simulations.—We tested our results by
simulating a network of leaky-integrate-and-fire neurons.
The network consists of two excitatory (E) clusters which
mutually inhibit each other indirectly via inhibitory clusters
[Fig. 3(a), see Ref. [24] for networks with > 2 clusters].
Initially, intracluster £ — E connections are strong, while
intercluster connections are weak. Crucially, the probability
that an £ — E connection exists is independent of the
cluster assignment. The initial structure may represent two
mutually exclusive memories stored in the network that
spontaneously switch on a timescale of ~0.2 s [Fig. 3(a)].
Structured inhibition is consistent with experiments show-
ing inhibitory stimulus-specific ensembles, and it may arise
from inhibitory plasticity [53-55]. We investigate memory
retention when E — E synapses undergo multiplicative
plasticity by examining the steady-state statistics of C,
network structure, and dynamics.

In this network, potentiation is more likely in intracluster
relative to intercluster synapses, so the tail of P, for intra-
cluster synapses is heavier [Fig. 3(b)]. Yet, notably, P,, is
unimodal with only minimal saturation to the upper bound.
To examine the stability of network structure, we plot the
steady-state £ — E weight matrix spectrum [Fig. 3(c)]. The
spectral distribution’s bulk follows the circular law for a
network with independent, random weights, sampled from
cluster-specific distributions [24,56]. Additionally, there are
two outlying eigenvalues. The fact that the larger eigenvalue
(corresponding to the “DC” eigenvector) does not saturate to
its maximum possible value, together with the stability of the
switching dynamics, suggests that there is no runaway
potentiation of either cluster. The smaller eigenvalue corre-
sponds to an eigenvector that follows from the clustered
connectivity. Angles between the plastic network’s eigen-
vectors and those of a network with perfect cluster structure
are stable and much smaller than angles computed for a
network with shuffled connections, indicating that network
structure is preserved despite ongoing plasticity. As predicted
by the mean-field analysis, strong synapses are protected
from rapid turnover. The dynamics of the plastic network also
retains the cluster properties, exhibiting larger intracluster
spike-time correlations and larger avalanches than a shuffled
network. Intriguingly, avalanche statistics are closely related
to the synaptic-weight distribution [57].

To understand the implications of the multiplicative
rule beyond stability, we extended the results in Ref. [58]
and analytically computed the memory capacity of a
Hopfield-like network, defined such that the variance of
the synaptic-weight distribution is independent of the
memory load [24]. Figure 3(h) shows that a heavier tail
of the distribution, similarly to P,, in Fig. 2(e), leads to a
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intracluster connections. (c) Eigenvalues (top) and eigenvectors (bottom) of the £ — E steady-state synaptic-weight matrix. The second
outlier suggests that the network’s cluster structure is preserved at steady state. (d) The first two subspace angles between the plastic
network and a network with perfect cluster structure as a function of time. The second angle in the plastic network remains far from /2
compared to the shuffled network. (e) Joint distribution of (W, T) for intracluster £ — E connections at steady state. Similarly to the
reduced model [Fig. 2(c)], strong synapses are preferentially protected. (f),(g) The plastic network exhibits larger avalanches and
stronger intracluster spike-timing correlations, compared to the shuffled network. (h) Memory capacity of a Hopfield-like network
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Ref. [24] for simulation and calculation details.

marked increase in capacity. Furthermore, we demonstrate
in Ref. [24] that the multiplicative plasticity rule sup-
ports efficient learning of structured connectivity [akin to
Fig. 3(a)], reflecting the structure of an external input.

In Ref. [24] we explored the sensitivity of the spiking
network stability results to changes of two key parameters, the
potentiation/depression thresholds [0, ; in Eq. (6)] and the
structure of inhibition. We additionally showed that networks
with intrinsically bistable synapses [10] are also stable, but
they do not exhibit realistic synaptic-weight distributions or
activity-dependent protection of strong synapses.

Highlighting the importance of the multiplicative rule’s
statistics, we found that an additive plasticity rule with C =
¢ + ¢, [instead of Eq. (2)] rapidly leads to instability, and
it is unable to efficiently learn the structure of an external
input [24].

Our analysis offers insights to the two-timescale problem,
where synaptic interactions determine network dynamics
on short timescales and undergo neural-activity-dependent
modifications on longer timescales. Importantly, we analyze
the network in a regime where the strict separation of time-
scales does not hold. Previous studies utilizing plasticity
rules where modifications depend (possibly nonlinearly) on
sums over pre- and postsynaptic activity typically resulted in
unrealistic synaptic-weight or firing-rate distributions, or requi-
red fast homeostatic mechanisms for stability [13—16,59-62].
The multiplicative structure of the plasticity rule analyzed here
effectively eliminates modifications due to “spurious” activity,

while specific patterns of activity are responsible for potentia-
tion and learning. The general structure of the multiplicative
process introduced here suggests that our results could be
applied to understand nonlinear and adaptive interacting
systems in a broad range of scientific fields.
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