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The seminal work by Kazimierczuk et al. [Nature 514, 343 (2014)] has shown the existence of highly
excited exciton states in a regime, where the correspondence principle is applicable and quantum
mechanics turns into classical mechanics; however, any interpretation of exciton spectra based on a
classical approach to excitons is still missing. Here, we close this gap by computing and comparing
quantum mechanical and semiclassical recurrence spectra of cuprous oxide. We show that the quantum
mechanical recurrence spectra exhibit peaks, which, by application of semiclassical theories and a scaling
transformation, can be directly related to classical periodic exciton orbits. The application of semiclassical
theories to exciton physics requires the detailed analysis of the classical exciton dynamics, including three-
dimensional orbits, which strongly deviate from hydrogenlike Keplerian orbits. Our findings illuminate
important aspects of excitons in semiconductors by directly relating the quantummechanical band structure
splittings of excitons to the corresponding classical exciton dynamics.
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Excitons are atomlike states in semiconductors formed
by an electron and a positively charged hole. They are
created by exciting an electron from the valence band into
the conduction band, where the electron forms a bound
hydrogenlike state with the hole remaining in the valence
band [1,2]. Since the experimental observation of giant
Rydberg excitons with principal quantum numbers up to
n ¼ 25 in Cu2O by Kazimierczuk et al. [3] the exciton
physics of cuprous oxide has attracted a strongly increasing
interest, both experimentally [3–6] and theoretically [4–8].
In particular, the impact of the valence band structure
causes significant deviations of the exciton spectra from a
simple hydrogenlike model, which have now been inves-
tigated in great detail [4–7].
For the hydrogen atom the connection of Rydberg spectra

to classical Keplerian orbits is well established by the Bohr-
Sommerfeld model. Semiclassical trace formulas [9,10]
provide the link between quantum spectra and classical
dynamics of both regular and chaotic systems, and are the
foundation for the understanding of level-spacing dynamics
[11]. For example, the diamagnetic Kepler problem has
served as a prototype system for the study of quantum chaos,
i.e., the effects of a classical chaotic dynamics on quantum
spectra [12,13]. Because of the additional spin degrees
of freedom in the semiconductor and the strong, non-
negligible spin-orbit interaction the existence of an exciton
dynamics for quasiparticles similar to that for electrons in
hydrogen atoms is not obvious. A first step on a semi-
classical description of Rydberg excitons in Cu2O has been
made in Ref. [14] by proposing a classical model using an
adiabatic approach that separates the fast spin dynamics and
the slow electron-hole dynamics. By constructing action

variables for the exciton dynamics in certain symmetry
planes of the crystal allowed energy regions for the existence
of exciton states could be obtained. This gives a first hint for
the validity of a semiclassical approach; however, a direct
verification of a classical exciton dynamics is still missing.
By computing the quantum mechanical recurrence spectra
and comparing them with the classical and semiclassical
results, we reveal the existence and meaningfulness of a
classical exciton dynamics. Direct signatures of exciton
orbits obtained in quantum mechanical exciton recurrence
spectra provide an intuitive picture for the understanding of
excitons in Cu2O.
The investigation of the phase space topology with

similar methods, as introduced by Gekle et al. [15,16]
for the hydrogen atom in crossed electric and magnetic
fields, reveals a mostly regular or near-integrable exciton
dynamics with periodic orbits on one- to three-dimensional
tori. Here, we establish the connection between the fine-
structure splitting of excitons in quantum spectra of the
yellow series of Cu2O and the corresponding classical
exciton dynamics. According to semiclassical theories
[9,10], the frequencies of the oscillations are determined
by the action of the periodic orbits, and the amplitudes are
related to stability properties of the orbits at a given energy.
Performing a Fourier transform of the density of states from
energy to time domain results in a recurrence spectrum
which exhibits peaks at periods that can be assigned to
classical orbits, as shown in Sec. I of the Supplemental
Material [17]. For systems exhibiting an appropriate
scaling property the peaks in the recurrence spectrum
become sharp δ peaks [26]. To this aim we apply a scaling
technique and calculate the classical dynamics of the
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system. The obtained periodic exciton orbits perfectly
explain the observed structures in the quantum mechanical
recurrence spectra, and thus provide a deeper physical
understanding of excitons in semiconductors.
A full description of excitons in cuprous oxide needs to

consider the cubic Oh symmetry of the system. Introducing
relative and center-of-mass coordinates for the electron
and hole and neglecting the center-of-mass momentum,
the Hamiltonian for excitons in cuprous oxide is given
by [7,27,28]

H ¼ Eg þHkinðp; Î; ŜhÞ −
e2

4πε0εjrj
þHSO; ð1Þ

with the relative coordinates r and momenta p and the
vector operators Î, Ŝh for angular momenta I ¼ 1 and
Sh ¼ 1=2. Here, the first term Eg ¼ 2.17208 eV is the gap
energy between the uppermost valence band and the lowest
conduction band [3]. The second term

Hkinðp; Î; ŜhÞ ¼
γ01
2m0

p2 þ 1

2ℏ2m0

½4γ2ℏ2p2 − 6γ2ðp2
1Î

2
1 þ c:p:Þ − 12γ3ðfp1; p2gfÎ1; Î2g þ c:p:Þ

− 12η2ðp2
1Î1Ŝh1 þ c:p:Þ þ 2ðη1 þ 2η2Þp2ðÎ · ŜhÞ − 12η3ðfp1; p2gðÎ1Ŝh2 þ Î2Ŝh1Þ þ c:p:Þ�; ð2Þ

accounts for the kinetic energy of the electron and hole. It
includes the cubic band structure, described by the qua-
sispin Î and the hole spin Ŝh with their components Îi, Ŝhi
as well as the components of the momentum pi. Further-
more, m0 is the free-electron mass, fa; bg ¼ 1

2
ðabþ baÞ

denotes the symmetrized product, c.p. stands for cyclic
permutation, γi and ηi are the Luttinger parameters [5], and
γ01 ¼ γ1 þm0=me ¼ 2.77. The third term in Eq. (1) is the
screened Coulomb potential with the dielectric constant
ε ¼ 7.5. The fourth term in Eq. (1) is the spin-orbit term

HSO ¼ 2

3
Δ
�
1þ 1

ℏ2
Î · Ŝh

�
; ð3Þ

where Δ ¼ 0.131 eV is the spin-orbit coupling [5]. In our
computations we use the same material parameters as given
in Ref. [29], but neglect central-cell corrections [8,30,31],
which can be justified for high principal quantum
numbers in the semiclassical limit, as shown in Sec. II
of the Supplemental Material [17]. For a given energy
the classical dynamics of the yellow exciton series can
be calculated by using the adiabatic approach introduced
in Refs. [14,17].
Without the spin-orbit term [Eq. (3)] the Hamiltonian

[Eq. (1)] does not depend on the energy when multiplied by
n2eff and performing a scaling transformation r ¼ n2eff r̃,
p ¼ n−1eff p̃, with the effective quantum number neff given
by n2eff ≡ ERyd=ðEg − EÞ with ERyd ¼ 13.6 eV=ðγ01ε2Þ≈
87 meV the Rydberg energy of cuprous oxide, which
means that the classical dynamics is the same for all values
of neff . The nonscaled action S is connected to the scaled
value S̃ by a simple linear scaling SðneffÞ ¼ S̃neff . In
semiclassical theories the density of states for systems
with such a scaling property can be expressed as a Fourier
series in the scaled action S̃PO [17,26],

ϱðneffÞ ¼ ϱ0ðneffÞ þℜ
X
PO

APO expðiS̃POneff=ℏÞ; ð4Þ

with ϱ0ðneffÞ the average density of states. The sinusoidal
fluctuations of the density are related to the periodic
orbits (PO) of the classical system with APO and S̃PO
the amplitude (including the Maslov index) and the scaled
action of the orbits, respectively.
To recover the scaling property for the Hamiltonian we

introduce an energy-dependent coupling parameter Δ̃, i.e.,

Δ → Δ̃ ¼ n20
n2eff

Δ; ð5Þ

with a fixed parameter n0. Note that the replacement
[Eq. (5)] is not possible in an experiment; however, a
tunable spin-orbit coupling Δ has already been used for the
theoretical investigation of the exchange interaction in the
yellow exciton series [31]. The classical dynamics is then
that of neff ¼ n0. Using the adiabatic approach [14,17] and
choosing the lowest-lying energy surface in momentum
space corresponding to the yellow exciton series classical
exciton orbits can be obtained by numerical integration of
Hamilton’s equations of motion for the relative coordinates
and momenta. In most parts of the phase space we observe
a regular dynamics of the excitons on one- to three-
dimensional tori. Periodic orbits on these tori can be
described by one to three integer winding numbers Mi.
The number of winding numbers for the three-dimensional
orbits can be reduced to an effective two-dimensional
description by two winding numbers M1 and M2

(Sec. II, Supplemental Material [17]). The corresponding
action variables are J1 and J2. At given energy E they are
related by the function gEðJ1Þ ¼ J2, which can be used to
compute the semiclassical amplitudes of periodic orbits on
resonant tori [9,32]. In addition the stability eigenvalues
λPO, which describe the linearized response of a periodic
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orbit to a small perturbation are required for the calculation
of the semiclassical amplitudes in Eq. (4). Since only one
pair of stability eigenvalues shows deviations from the
integrable behavior for the majority of orbits we use a
mixed approach combining the amplitudes of the Berry-
Tabor formula for a two-dimensional system [9,32] with the
contribution of the stability eigenvalues λPO and 1=λPO for
the unstable direction from Gutzwiller’s trace formula [10],
resulting in the equation

jAPOj ¼
1

πℏ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijλPO þ 1=λPO − 2jp S̃POffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏM3
2jg00Ej

p ð6Þ

for the periodic-orbit amplitudes (Sec. II, Supplemental
Material [17]). For the computation of the amplitudes of
the isolated nearly circular orbits we resort directly to
Gutzwiller’s trace formula.
In the quantum mechanical case the operators for

position and momentum read as ˆ̃r ¼ r̃, ˆ̃p ¼ −iℏeff∇r̃, with
ℏeff ¼ ℏ=neff an effective Planck constant, as shown in
Sec. III of the Supplemental Material [17]. The Schrödinger
equation for cuprous oxide is now transformed to the
generalized eigenvalue problem

�
e2

4πε0εjr̃j
− n20HSO − ERyd

�
jΨi ¼ ℏ2

effHkinjΨi ð7Þ

for the squared effective Planck constant, i.e., λ ¼ ℏ2
eff , and

thus for the effective quantum number neff. Equation (7) is
solved numerically by using a complete set of basis states
jNLJFMFi with Coulomb-Sturmian radial functions
UNLðrÞ (Sec. III, Supplemental Material [17]).
The decisive point of the scaling is that the eigenvalues in

Eq. (7) correspond to the effective Planck constant
ℏeff ¼ ℏ=neff , i.e., the eigenstates approach the semiclass-
ical limit with increasing eigenvalues neff , but the classical
exciton dynamics corresponding to the spectrum does not
depend on this effective Planck constant, and thus stays the
same for all states of the scaled spectrum. The classical
exciton dynamics is that of the nonscaled Hamiltonian (1)
[neff ¼ n0 in Eq. (5)] at energy E ¼ Eg − ERyd=n20, and is
thus controlled via the parameter n0 in Eqs. (5) and (7). The
fluctuations of the scaled quantum spectra obtained from
Eq. (7) can be analyzed by Fourier transform in the variable
neff and, via the semiclassical result [Eq. (4)], should
provide δ peaks at frequencies given by the scaled actions
S̃PO of the periodic orbits of the corresponding classical
exciton dynamics.
In the following all parameters are given in exciton-

Hartree units which are obtained by setting ℏ ¼ e ¼
m0=γ01 ¼ 1=ð4πε0εÞ ¼ 1. For the presentation of the results
we focus on n0 ¼ 5, i.e., a principal quantum number,
which is high enough that the adiabatic approach is valid,
but low enough that the secular motion of the classical
exciton orbits, which decreases with increasing n0, is

sufficiently fast (Sec. II, Supplemental Material [17]).
Numerical diagonalization of the generalized eigenvalue
problem [Eq. (7)] provides the scaled quantum mechanical
spectrum for neff displayed in Fig. 1(a) showing nicely the
fine structure splittings. Due to the scaling property
introduced in Eq. (5) the spectrum differs from the physical
(nonscaled) spectrum. The ratio of the scaled spin-orbit
splitting Δ̃ to the physical value Δ is shown in the upper
axis of Fig. 1(a). In the vicinity of neff → n0 the scaled spin-
orbit splitting and the physical value coincide leading to a
good agreement of physical and scaled spectra in this
energy range. Contrary to the physical spectrum, the scaled
spectrum can be understood directly in terms of classical
orbits, because the semiclassical density of states for

(a)

(b)

FIG. 1. (a) Part of the scaled quantum mechanical density of
states (QM) for n0 ¼ 5. (b) Quantum mechanical exciton re-
currence spectrum (black solid line, with zero line shifted for
better visibility) obtained by FT of the QM density of states
shown in (a) and the semiclassical recurrence spectrum (colored
bars). The peaks corresponding to one or multiple repetitions of
nearly circular orbits are labeled with a single winding number
M1. Two winding numbers M1∶M2 indicate planar orbits in one
of the two different symmetry planes of the crystal, and fully
three-dimensional orbits are marked by three winding numbers
M1∶M2∶M3. The observed structures agree very well with the
semiclassical results.
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the scaled systems is given as a Fourier series with the
semiclassical amplitudes APO at positions S̃PO.
The scaled quantum spectrum shown in Fig. 1(a) is a sum

of δ distributions, and thus the Fourier transform (FT) can
easily be carried out analytically. The resulting Fourier
spectrum is presented as black solid line in Fig. 1(b). It
exhibits a large number of sharp peaks with increasing
density as a function of S̃. The peaks should approach δ
functions, i.e., become infinitely narrow for the Fourier
transform of an infinitely long scaled quantum spectrum
with neff → ∞. However, for finite length, resulting from
the diagonalization of the truncated generalized eigenvalue
problem [Eq. (7)], the peaks are broadened and side peaks
may occur. To suppress these features we use a Gaussian
window function as an envelope when performing the
Fourier transform (Sec. III, Supplemental Material [17]).
For comparison, the semiclassical results are shown in

Fig. 1(b) as colored peaks at the positions S̃PO=2π of the
periodic orbits. The peak heights mark the absolute values
jAPOj of the semiclassical amplitudes. The peaks are
labeled by the one to three winding numbers Mi of the
corresponding periodic orbits moving on one- to three-
dimensional tori. As can be seen in Fig. 1(b), the quantum
mechanical and semiclassical exciton recurrence spectra
agree very well. At low action ðS̃=2π ≲ 5Þ the peaks solely
belong to one or multiple recurrences of the two shortest
periodic exciton orbits, viz. the nearly circular orbits in the
planes perpendicular to the [001] and [011] axes, moving
on one-dimensional tori labeled by a single winding
number M1 ¼ 1; 2; 3;…. These orbits are shown in
Fig. 2(a). At higher action ðS̃=2π ≳ 5Þ the recurrence

spectrum becomes more and more complicated due to
the appearance of additional peaks belonging to exciton
orbits on two-dimensional tori located in the planes
perpendicular to the [001] and [011] axes (marked by
two winding numbers M1∶M2) or fully three-dimensional
orbits with winding numbers M1∶M2∶M3. The 2D orbits
with M1∶M2 ¼ 7∶1 in the symmetry planes of the crystal
are shown in Fig. 2(b). Two fully 3D exciton orbits are
illustrated in Figs. 2(c) and 2(d).
The structure of the classical exciton dynamics is illus-

trated in more detail in Fig. 3, where the classical action
S̃PO of the period orbits is shown as function of the ratio
of the winding numbers M1=M2. For better visibility,
the actions are normalized by the actions S̃⊥½011� of the
corresponding orbits with the same winding numbers M1

and M2 in the plane perpendicular to the [011] axis.
Therefore, by construction, the periodic orbits in the plane
perpendicular to the [011] axis are located on the straight
line at S̃PO=S̃⊥½011� ¼ 1. These orbits lie on a 2D torus in
phase space. With increasing ratioM1=M2 they converge at
M1=M2 ≈ 68.8 to the nearly circular orbit in the symmetry
plane perpendicular to [011]. This point in Fig. 3 thus
represents a limiting 1D torus in phase space indicated by
the green rhombus. In a similar way the periodic orbits
perpendicular to the [001] axis, lying on a different 2D
torus in phase space, are located on the upper line in Fig. 3
with the limiting nearly circular orbit on a 1D torus at
M1=M2 ≈ 44.8 shown as a blue rhombus. In between the
orbits on the two limiting 2D tori the periodic orbits on the
3D tori are located. Subsets of these orbits with winding

(a) (b)

(c) (d)

FIG. 2. (a) Nearly circular orbits with winding numberM1 ¼ 1
and (b) planar orbits with winding numbersM1∶M2 ¼ 7∶1 in the
two different symmetry planes of the crystal. (c), (d) Two
examples of fully three-dimensional orbits with winding numbers
M1∶M2∶M3. The colors are the same as in Fig. 1.

FIG. 3. Actions S̃PO of periodic orbits as function of the ratio of
winding numbers M1=M2. The actions are normalized by the
actions S̃⊥½011� of the corresponding orbits with the same winding
numbersM1 and M2 in the plane perpendicular to the [011] axis.
The two-dimensional orbits approach the action of the nearly
circular orbit (indicated by rhombi) of the corresponding plane
with increasing M1=M2. Some three-dimensional orbits with
marked ratio M3∶M2 are located in the area enclosed by orbits in
the two different symmetry planes of the Oh group. The orbits
shown in Fig. 2 are highlighted by larger symbols.

PHYSICAL REVIEW LETTERS 129, 067401 (2022)

067401-4



number M2 ¼ 1 or 2 and ratios M3∶M2 ¼ 2∶1 or 5∶2 are
marked by red dots in Fig. 3. The three-dimensional orbits
fill the area between the limiting 2D tori more densely
when longer periodic orbits with more complicated ratios
of the winding numbers are considered. As can be seen in
Fig. 3, the classical action of periodic orbits with the
same winding numbers M1 and M2 differ by less than 2%.
This causes a clustering of several orbits in the recurrence
spectra in Fig. 1(b). In these clusters the peaks at the highest
action belong to the two-dimensional orbits in the (mostly)
stable symmetry plane perpendicular to the [001] axis and
its equivalents. Typically, these peaks exhibit the highest
semiclassical amplitude within the cluster. At slightly
lower action one finds unstable three-dimensional orbits,
and the peak with lowest action of the cluster belongs to a
two-dimensional orbit in the plane perpendicular to the
[011] axis.
In summary, we have found signatures of exciton orbits

in quantum mechanical recurrence spectra of cuprous
oxide. We have revealed the classical phase space structure
of yellow excitons in cuprous oxide and observed recur-
rence peaks in Fourier transform quantum spectra, which,
by application of semiclassical theories can be directly
related to two-dimensional periodic orbits in symmetry
planes of the crystal or fully three-dimensional periodic
orbits. The results have been obtained by using an adiabatic
approach for the classical exciton dynamics and by appli-
cation of a scaling technique to the quantum spectra.
Considering these approximations and that the Bohr-
Sommerfeld model already fails to predict the energy
levels of the helium atom, it is remarkable that a classical
picture is capable of describing the spectral features of
excitons in Cu2O. Here, we have focused on the dynamics
of Rydberg excitons with principal quantum number n ¼ 5
in the (nonscaled) Cu2O crystal. The analysis will be
extended to other dynamics regimes by varying n0. It will
also be interesting to investigate the classical and semi-
classical dynamics of magnetoexcitons [33,34] in cuprous
oxide. Furthermore, the classical model intrinsically
exhibits a dipole moment which could provide a starting
point to describe and better understand interactions
between Rydberg excitons such as scattering processes
between Rydberg excitons [35,36], the Rydberg blockade
[37], and the possible existence of an exciton molecule [38]
in analogy to Rydberg molecules [39,40].
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