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The transfer and control of angular momentum is a key aspect for spintronic applications. Only recently,
it was shown that it is possible to transfer angular momentum from the spin system to the lattice on
ultrashort timescales. To contribute to the understanding of angular momentum transfer between spin and
lattice degrees of freedom we present a scheme to calculate fully relativistic spin-lattice coupling
parameters from first principles. In addition to the dipole-dipole interactions often discussed in the
literature, these parameters give, in particular, access to the spin-lattice effects controlled by spin-orbit
coupling. By treating changes in the spin configuration and atomic positions at the same level, closed
expressions for the atomic spin-lattice coupling parameters can be derived in a coherent manner up to any
order. Analyzing the properties of these parameters, in particular their dependence on spin-orbit coupling,
we find that even in bcc Fe the leading term for the angular momentum exchange between the spin system
and the lattice is a Dzyaloshiskii-Moriya-type interaction, which is due to the symmetry breaking distortion
of the lattice.
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Spintronics is an emerging field aiming for the develop-
ment of future nanoelectronic devices. A key aspect is the
transport and control of angular momentum [1]. While
the focus has long been on spin-polarized electrons to carry
the angular momentum, newer lines of research include the
magnonic spin as angular momentum carrier, opening
perspectives for insulator spintronics. Understanding the
flow of angular momentum is also vital for the progress of
ultrafast magnetization switching. In certain ferrimagnets, a
single laser pulse can switch the magnetization orientation
on a subpicosecond timescale [2], due to the exchange of
spin angular momentum between the two magnetic sub-
lattices [3,4]. However, recent work on ultrafast demag-
netization in ferromagnets has demonstrated that angular
momentum can also be transferred from the spin system to
the lattice on similar time scales [5]. In the lattice, the spin
angular momentum is absorbed in terms of phonons
carrying the angular momentum until—on larger time-
sscales—the macroscopic Einstein–de Haas effect sets in
[6]. These findings add another piece to the mysteries of
spintronics and ultrafast phenomena, namely, the under-
standing of the microscopic mechanisms that transfer
angular momentum between the spin system and the lattice.
The calculation of spin-lattice coupling (SLC) terms,

including the exchange of angular momentum between
spins and lattice degrees of freedom, is only at its beginning
[7–10]. The development of new tools for the quantitative
calculation of spin lattice dynamics—so-called molecular-
spin dynamics simulations [11–15]—is delayed by the fact

that a systematic derivation of proper spin-lattice para-
meters is still missing. For a pure spin model the calculation
of exchange coupling parameters Jij of the Heisenberg
Hamiltonian by means of the so-called Lichtenstein for-
mula [16] is a well-established approach to supply the input
for Monte Carlo [17] as well as spin-dynamics simulations
[18,19]. Corresponding extensions of this computational
scheme are available to account for the full tensorial form
of the interaction parameters [20,21] as well as their
extension to a multispin formulation [22].
Including the lattice degrees of freedom is much more

challenging. A practical scheme to calculate microscopic
SLC parameters quantitatively and on the basis of electronic
structure calculations has been suggested so far only by
Hellsvik et al. [14] by applying the Lichtenstein formula as
well as its relativistic generalization [23] for a system with
one atom moved gradually from its equilibrium position.
In this Letter we present and exploit an improved, fully

relativistic scheme that treats changes to the spin configu-
ration and atomic positions on the same level. This allows
us to derive closed expressions for the atomic SLC
parameters in a coherent way up to any order. First
numerical results are presented for the three-site terms of
bcc Fe. Surprisingly, even in a bcc crystal the leading term
for the exchange of spin angular momentum with the lattice
is a Dzyaloshiskii-Moriya-type interaction emerging due to
the symmetry breaking distortion of the lattice.
To describe the coupling of spin and spatial degrees

of freedom we adopt an atomistic approach and start
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with the expansion of a phenomenological spin-lattice
Hamiltonian
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j −
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i e
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ju

μ
ku

ν
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that can be seen as a lattice extension of a Heisenberg
model. Accordingly, the spin and lattice degrees of freedom
are represented by the orientation vectors êi of the magnetic
moments m⃗i and displacement vectors u⃗i for each atomic
site i. In Eq. (1) we omit pure lattice terms that involve the
force constants [14] as we focus here on the magnetic part
of the Hamiltonian. The pure spin part (term 1) has been
restricted to its two-site contributions with the correspond-
ing coupling parameters denoted two-site SSC (spin-spin
coupling) below. An extension accounting for higher order
multispin-lattice interactions can be done in a straightfor-
ward manner [22]. Also, the SLC has been restricted to
three and four-site terms (terms 2 and 3). As relativistic
effects are taken into account, the exchange and spin-lattice
interactions are described in tensorial form [20,22], i.e.,
Jαβij , J

αβ;μ
ij;k , and J

αβ;μν
ij;kl . The Hamiltonian in Eq. (1) is similar

in form to the one discussed by Hellsvik et al. [14],
potentially providing a suitable basis for advanced molecu-
lar-spin dynamics simulations.
In previous works expressions for the exchange coupling

parameters Jij [16] or J
αβ
ij [20,21], respectively, have been

derived by mapping the free energy landscape F ðfêigÞ
obtained from first-principles electronic structure calcula-
tions on the Heisenberg spin Hamiltonian. Here, we follow
the same strategy by mapping the free energy landscape
F ðfêig; fu⃗igÞ accounting for its dependence on the spin
configuration fêig as well as atomic displacements fu⃗ig on
the same footing. Making use of the magnetic force
theorem the change in free energy ΔF induced by changes
of the spin configuration fêig with respect to a suitable
reference system and simultaneous finite atomic displace-
ments fu⃗ig can be written in terms of corresponding
changes to the single-particle energies,

ΔF ¼
Z

EF

dEðE−EFÞΔnðEÞ¼−
Z

EF

dEΔNðEÞ; ð2Þ

where EF is the Fermi energy and ΔnðEÞ and ΔNðEÞ are
corresponding changes to the density of states (DOS) nðEÞ
and integrated density of states NðEÞ, respectively.
ΔNðEÞ can be evaluated efficiently [16,20,21] via the so-

called Lloyd formula when the underlying electronic
structure is described by means of the multiple scatte-
ring or Korringa-Kohn-Rostoker (KKR) formalism [24].
Adopting this approach we find

ΔF ¼ −
1

π
ImTr

Z
EF

dE½ln τ
¼
ðEÞ − ln τ

¼
0ðEÞ�; ð3Þ

with the so-called scattering path operator τ
¼
ð0ÞðEÞ, where

the double underlinement indicates matrices with respect to
site and spin-angular momentum indices [24]. Within the
KKR formalism these supermatrices, characterizing the
reference τ

¼
ð0ÞðEÞ and perturbed τ

¼
ðEÞ systems, respectively,

are given by

τ
¼
ð0ÞðEÞ ¼ ½m¼

ð0ÞðEÞ −G
¼
ðEÞ�−1; ð4Þ

with G
¼
ðEÞ the structure Green’s function and m¼

ð0ÞðEÞ ¼
½ t
¼
ð0ÞðEÞ�−1 the inverse of the corresponding site-diagonal

scattering matrix that carries all site-specific information
depending on fêig and fu⃗ig [24].
Considering a ferromagnetic reference state (êi ¼ ẑ)

with all atoms in their equilibrium positions (u⃗i ¼ 0) the
perturbed state is characterized by finite spin tiltings δêi
and finite atomic displacements u⃗i. Writing for site i the
resulting changes in the inverse t matrix as Δs

μmi ¼
miðδêμi Þ −m0

i and Δu
νmi ¼ miðuνi Þ −m0

i allows us to
replace the integrand in Eq. (3) by

ln τ
¼
− ln τ

¼
0 ¼ − lnð1þ τ

¼
½Δs

μm¼ i
þ Δu

νm¼ j
þ � � ��Þ; ð5Þ

where all site-dependent changes in the spin configuration
fêig and atomic positions fu⃗ig are accounted for in a one-
to-one manner by the various terms on the right-hand side.

This implies in particular that the matrices ΔsðuÞ
μðνÞm¼ i

in

Eq. (5) are site diagonal and have nonzero blocks only for
site i. Because of the use of the magnetic force theorem
these blocks may be written in terms of the spin tiltings
δêμi and atomic displacements of the atoms uνi together with
the corresponding auxiliary matrices Tμ

i and Uν
i [25],

respectively, as

Δs
μmi ¼ δêμi T

μ
i ; ð6Þ

Δu
νmi ¼ uνiU

ν
i : ð7Þ

Inserting these expressions into Eq. (5) and the result in
turn into Eq. (3) allows us to calculate the parameters of the
spin-lattice Hamiltonian as the derivatives of the free
energy with respect to tilting angles and displacements.
With this we derived a new scheme to obtain systematically
SLC terms up to any order.
In the following we will restrict ourselves to the third-

order SLC parameters, which are linear with respect to the
displacements (for more details including the fourth-order
SLC parameters see the Supplemental Material [25]). One
can write the three-site expression as
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We will call all these terms three-site SLC terms in the
following, even if site indices are identical. The prefactor
1=2 occurs to avoid double counting of the identical terms
upon summations in Eq. (1) over indices i and j.
Below, we present our first results for the SLC para-

meters for bcc Fe based on a ferromagnetic reference
system with its magnetization M⃗ in the z direction.
Furthermore, to check the validity of our new approach
for the calculation of J αβ;μ

ij;k we performed also conventional
supercell calculations for the two-site SSC parameters
Jαβij ðuμkÞ as a function of displacement uμk of atom k.
These calculations have been done for a 2 × 2 × 2 supercell
implying a periodic displacement uμk. For the comparison,
we multiply our SLC parameters J αβ;μ

ij;k with uμk and

compare with the SSC parameters Jαβij ðuμkÞ for varying
uμk, see Fig. 1, and for a further comparison our
Supplemental Material [25]. If not otherwise noted, we
restrict ourselves to displacments of atom k along the x
axis, u⃗kjjx̂.
Since we are especially interested in the exchange of

angular momentum between the spin and lattice degrees of
freedom we focus on the spin-orbit coupling (SOC) driven
elements of the three-site SLC tensor J αβ;μ

ij;k , which give
rise to magnetocrystalline anisotropies (MCA) and
Dzyaloshinskii-Moriya interactions (DMI) [20] induced
by a displacement of atom k. Figure 1 shows, as an
example, the nearest-neighbor SLC products J xy;x

ij;i · uxi
compared with the two-site SSC interaction parameters
for four groups of atoms as sketched in the inset of Fig. 1.

We find good agreement between the different approaches
for small amplitudes of the displacement uxi . Please note
that the present approach gives direct access to the SLC
parameters of any order with respect to the atomic
displacement or spin tilting in an extremely efficient way.
The anti-symmetric part of the off-diagonal SLC

parameters, J off−a;μ
ij;k ¼ 1

2
ðJ xy;μ

ij;k − J yx;μ
ij;k Þ, can be interpreted

[20] as the DMI, Dz
ij, induced by the symmetry-

breaking displacement of atom k and one can define a
Dzyaloshinskii-Moriya-like SLC (DSLC), Dz;μ

ij;k¼J off−a;μ
ij;k .

Note that the conventional DMI vanishes for the non-
distorted bcc Fe lattice due to inversion symmetry.
Furthermore, for symmetry reasons, all antisymmetric
off-diagonal elements of the three-site SLC are equal to
zero in the case of a displacement of atom k, positioned at
the same distance from atoms i and j, along ẑ, implying
Dz;z

ij;k ¼ 0. This does not apply for the other components,
Dx;z

ij;k and Dy;z
ij;k.

A further analysis of our SLC parameters is shown
in Fig. 2, again for i ¼ k, which implies that the displace-
ment along the x direction is applied to one of the
interacting atoms. Results for k ≠ jðiÞ are shown in
the Supplemental Material [25]. Different components of
the SCL parameters are plotted as a function of the distance
rij. The absolute values of the DSLC parameters jD⃗jμ¼x

ij;k

show a rather slow decay with the distance rij. These

FIG. 1. SLC parameters versus distortion for bcc Fe:
Comparison of the products J xy;x

ij;i · uxi (solid lines) with the
corresponding SLC terms ΔJxyij ðuxi Þ ¼ Jxyij ðuxi Þ − Jxyij ð0Þ calcu-
lated for a distorted system with the supercell technique (dotted
lines) for one atom i displaced by uxi along the x axis. The inset
shows the labeling of the nearest neighbor atoms used in the figure.

FIG. 2. Magnitude of site-off-diagonal and site-diagonal
SLC parameters: DMI jD⃗x

ij;jj and isotropic SLC J iso;x
ij;j (top),

antisymmetric diagonal components J dia−a;x
ij;j and J dia−a;x

ii;k

(middle), and symmetric off-diagonal components J off−s;x
ij;j and

J off−s;x
ii;k (bottom).
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parameters can take different values for the same distance,
which is a result of the symmetry imposed vanishing of
certain components of the DMI-like SLC for some r⃗ij
directions, which depend in turn also on the direction
of the displacement u⃗. The isotropic SLC parameters
J iso;μ¼x

ij;j ¼ 1
2
ðJ xx;μ¼x

ij;j þ J yy;μ¼x
ij;j Þ, which have only a weak

dependence on the SOC, are about 1 order of magnitude
larger than the DSLC. All other SOC-driven parameters
shown in Fig. 2, characterizing the displacement-induced
contributions to MCA, are much smaller than the DSLC.
Note that the DSLC is material specific and can be stronger,
e.g., in the case of magnetic overlayers deposited on a
heavy-element substrate [25]. A more detailed analysis of
the key role of the SOC for three-site SLC parameters is
given in the Supplemental Material [25].
So far, we have analyzed the SLC parameters in terms of

their impact on the spin-spin interactions for given dis-
placements of the atoms. Additionally, our spin-lattice
Hamiltonian, Eq. (1), predicts the inverse phenomenon:
a noncollinear spin configuration gives rise to forces acting
on the atoms, where the forces can be calculated as F⃗ ¼
−ð∂Hsl=∂u⃗kÞ [19]. The emerging forces for an exemplary
noncollinear spin configuration, a single spin rotated by
π=2 in an otherwise collinear configuration, are shown in
Fig. 3. These forces are decomposed into their longitudinal
and perpendicular parts (with respect to the distance vector
r⃗ij) and whether they come from isotropic, DMI-type or
MCA-type contributions to the SLC parameters. The main
contribution to the longitudinal forces, which do not
transfer angular momentum, comes once again from
the isotropic Heisenberg interaction. However, the
largest perpendicular—and with that angular momentum
transferring—component is once again due to the
DMI-type interaction. Plugging in numbers for the mass
of an Fe atom we note that the latter is sufficient to
accelerate a free Fe atom within 100 fs to a velocity of
about 1 m=s.
The role of the DMI-like SLC parameters for the spin-

lattice angular momentum transfer can also be discussed in
terms of magnon-phonon interactions [7,9,10,37]. With this
in mind, we represent the second term of the Hamiltonian in
Eq. (1), in terms of isotropic and anisotropic interactions
focusing on the DSLC contribution

Hme−DMI ¼
1

S2
X

i;j

X

k;μ

D⃗μ
ij;k · ðŝi × ŝjÞuμk: ð9Þ

Hme−DMI is now given in a form using spin operators ŝαi
instead of spin orientation vectors êαi , where S is the
maximal value for spin moment per atom. Introducing
spin raising and lowering operators ŝ�i ¼ ŝxi � iŝyi and
using in turn the Holstein-Primakoff transformation
[25,38], local spin fluctuations can be represented in terms
of canonical boson operators, b̂†i and b̂i. Performing Fourier

transformations for the spin operators and the atomic
displacements the Hamiltonian Hme−DMI can be reduced
to the momentum representation form [25]

Hme−DMI ¼
2iffiffiffiffiffiffi
2S

p
X

q⃗;μ

½D−;μ
q⃗ b̂q⃗ −Dþ;μ

−q⃗ b̂
†
−q⃗�uμq⃗

−
2iffiffiffiffi
N

p 1

S

X

k⃗;k⃗0;μ

Dz;μ

k⃗;k⃗0
b̂†
k⃗
b̂k⃗0u

μ

ðk⃗0−k⃗Þ; ð10Þ

where uμq⃗ ¼
P

λ ϵ
μ
λ;q⃗Xλ;q⃗ is the eigenvector corresponding to

the phonon mode ðλ; q⃗Þ with the polarization ϵμλ;q⃗ (see
Supplemental Material [25]). Following the conclusions in
Ref. [10], the first term in Eq. (10), which is determined by
the DSLC components Dx;μ

ij;k and Dy;μ
ij;k, describes the

magnon-phonon scattering that allows for an exchange
of angular momentum. On the other hand, the
DSLC component Dz;μ

ij;k (with z the magnetization direc-
tion) contributes to the magnon-number conserving scat-
tering characterized by the energy transfer only (see
Ref. [10]).

(a)

(b) (c)

FIG. 3. (a) Longitudinal (top) and perpendicular (bottom)
forces (with respect to r⃗ij) emerging from the isotropic,
DMI-type and MCA-type contributions to the SLC parameters.
The central spin at r⃗ ¼ ð0; 0; 0Þ is tilted in the y direction while all
the others point in the z direction [blue arrows in (b) and (c)].
(b) Directions of the forces with color coding indicating their
perpendicular components with red being high and gray being
low. (c) Directions of the perpendicular forces.
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The upper part of Fig. 4 shows the Fourier transforms
Dx;μ

q⃗ of the SLC parameters for bcc Fe, given by the
expression

Dν;μ
q⃗ ¼

X

j;k

Dν;μ
ij;ke

iq⃗·ðR⃗j−R⃗iÞe−iq⃗·ðR⃗k−R⃗iÞ; ð11Þ

which are plotted for q⃗ along the high-symmetry lines in the
Brillouin zone (see also Supplemental Material [25]). One
finds for them a strong dependence on the wave vector q⃗.
Moreover, this dependence is different for different com-
ponents of the atomic displacements, which reflects in turn
the difference of the magnon-phonon interactions for the
transverse and longitudinal phonon modes. However, an
efficient angular momentum transfer as well as a strong
magnon-phonon coupling, requires the crossing of the
phonon and magnon dispersion curves [39,40]. The lower
part of Fig. 4 shows the Fourier transforms of the site-
diagonal SLC parameters ImðJxy;μq⃗ þ Jyx;μq⃗ Þ=2, with μ ¼ x,
y, z, which can be seen as a local contribution to the
magnetic anisotropy induced by atomic displacements.
Comparing the results confirms the dominating role of
the DSLC for the magnon-phonon hybridization.
The contribution of the first term in the DSLC

Hamiltonian Hme−DMI in Eq. (10) to the phonon angular
momentum dynamics can also be characterized by
the corresponding torque on the phonon spin entering
the equation of motion for the phonon angular momentum

L⃗ph ¼
P

k u⃗k × π⃗k, given by T⃗ me¼−
P

k u⃗k×ð∂Hme=∂u⃗kÞ
[10], with the u⃗i and π⃗i the displacement and linear
momentum operators, respectively. The corresponding

one magnon-one phonon contribution to the torque, T⃗ me
is given by the expression (see Supplemental Material [25])

T γ
me−DMI ¼

2iffiffiffiffiffiffi
2S

p
X

q⃗;λ

½Γ−;γ
λ;q⃗ b̂q⃗ − Γþ;γ

λ;−q⃗b̂
†
−q⃗�Xλ;q⃗: ð12Þ

Here, the interaction vertices Γ�;γ
λ;q⃗ are defined as

Γ�;γ
λ;q⃗ ¼ ϵαβγ½ϵαλ;q⃗D�;β

q⃗ − ϵβλ;q⃗D
�;α
q⃗ �; ð13Þ

with ϵαβγ the Levi-Civita symbol. As one can see they are
fully determined by the DSLC parameters discussed above.
In summary, we present a scheme to calculate micro-

scopic and relativistic SLC parameters from first principles.
The perturbation due to a lattice distortion is treated on the
same footing as the distortion due to spin tilting, giving
access to SLC parameters up to any order for these
perturbations. Analyzing the properties of these parame-
ters, in particular their dependence on SOC, we find that
even in bcc Fe the leading term that is responsible for the
exchange of angular momentum between the spin system
and the lattice is a Dzyaloshiskii-Moriya-type interaction,
which emerges due to the symmetry breaking distortion
of the lattice. Our findings, hence, stress the impor-
tance of relativistic effects for the transfer of angular
momentum from magnonic excitations to circularly pola-
rized phonons [5,7–10].
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