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The properties of hydrogen under extreme conditions are important for many applications, including
inertial confinement fusion and astrophysical models. A key quantity is given by the electronic density
response to an external perturbation, which is probed in x-ray Thomson scattering experiments—the state
of the art diagnostics from which system parameters like the free electron density ne, the electronic
temperature Te, and the charge state Z can be inferred. In this work, we present highly accurate path
integral Monte Carlo results for the static electronic density response of hydrogen. We obtain the static
exchange-correlation (XC) kernel KXC, which is of central relevance for many applications, such as time-
dependent density functional theory. This gives us a first unbiased look into the electronic density response
of hydrogen in the warm-dense matter regime, thereby opening up a gamut of avenues for future research.
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Matter at extremedensities (n ∼ 1021–27=cm3) and temper-
atures (T ∼ 104–8 K) is ubiquitous throughout our Universe
[1]. This so-called warm dense matter [2] (WDM) naturally
occurs in a number of astrophysical objects such as giant
planet interiors [3,4], brown dwarfs [5], and the outer layers
of neutron stars [6,7]. In addition, WDM is highly important
for technological applications such as the discovery of novel
materials [8,9] and hot-electron chemistry [10]. Moreover, a
hydrogen fuel capsule has to traverse the WDM regime [11]
on its compression path toward inertial confinement fusion
[12]. Consequently, WDM is a highly active research area
and a strongly increasing number of experiments [13] are
performed at large research facilities such as the National
Ignition Facility (NIF) [14], the European X-Ray Free-
ElectronLaser Facility (XFEL) [15], or theSandiaZmachine
[16]. These developments have led to a number of spectacu-
lar recent discoveries, including the high-precision meas-
urement of the stopping power in WDM [17], the use of
record peak-brightness free-electron lasers to study shock
compressed aluminium [18], and the possible observation of
the molecular-to-metallic transition in hydrogen at extreme
pressure [19,20].
At the same time, we stress that the interpretation of such

experiments decisively depends on a rigorous theoretical
modeling. In fact, even basic system parameters like the

density or electronic temperature are generally unknown
and have to be inferred. In this regard, the x-ray Thomson
scattering (XRTS) technique [21,22] has emerged as themost
promising method of diagnostics of WDM experiments.
Unfortunately, the theoretical description of WDM con-

stitutes a most formidable challenge due to the highly non-
trivial interplay of a number of physical effects [2,23,24].
WDM states are correlated due to the Coulomb interac-
tion, the electrons (and sometimes the nuclei) are partially
quantum degenerate, and WDM is a highly excited state,
which rules out the well-stocked arsenal of ground-state
quantum many-body methods [25,26]. This intricacy is
usually expressed in terms of two characteristic parameters,
that are both of the order of unity [27]: (a) the density
parameter rs ¼ r̄=aB, where r̄ and aB are the Wigner-Seitz
radius and Bohr radius, and (b) the degeneracy temperature
θ ¼ kBT=EF, with EF being the Fermi energy [28].
In this situation, thermal density functional theory (DFT)

[29] has emerged as thework horse inWDM theory [2], as it
often combines a manageable computation cost with a
reasonable degree of accuracy. Yet, the results can substan-
tially depend on the employed exchange-correlation (XC)
functional [30], which cannot be obtained within DFT itself,
and has to be supplied as a semiempirical a priori input; see
Ref. [31] for a critical discussion focusing on hydrogen.
An additional challenge pertaining to the interpretation

of XRTS experiments is the wave-number dependence of
the measured signal. The ab initio estimation [32] of the
corresponding dynamic structure factor Sðq;ωÞ (beyond
model assumptions such as the Chihara decomposition
[33,34]) requires one to carry out, e.g., linear-response
time-dependent DFT (TD DFT) simulations [35], which

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 129, 066402 (2022)

0031-9007=22=129(6)=066402(7) 066402-1 Published by the American Physical Society

https://orcid.org/0000-0003-0290-3628
https://orcid.org/0000-0002-9725-9208
https://orcid.org/0000-0001-5926-9192
https://orcid.org/0000-0001-7293-6615
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.066402&domain=pdf&date_stamp=2022-08-04
https://doi.org/10.1103/PhysRevLett.129.066402
https://doi.org/10.1103/PhysRevLett.129.066402
https://doi.org/10.1103/PhysRevLett.129.066402
https://doi.org/10.1103/PhysRevLett.129.066402
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


need as input the frequency- and wave-vector-dependent
XC kernel KXCðq;ωÞ. Yet, little is known about the actual
KXCðq;ωÞ of a real WDM system, and previous studies
[33,36] have been exclusively based on drastic simplifica-
tions such as the adiabatic local density approximation
(ALDA). This is highly problematic, since these approxi-
mate kernels have been designed for the application at
T ¼ 0 and, in the case of ALDA, are valid only for small
wave numbers q ¼ jqj and break down for strong degrees
of inhomogeneity [37].
In the present work, we aim to overcome these limitations

for warm dense hydrogen by performing ab initio path
integral Monte Carlo (PIMC) calculations [38,39] for its
static electronic density response. This allows us to thor-
oughly address a number of fundamental questions, includ-
ing (i) the quantification of the impact of electron-ion
correlations on electronic properties, (ii) the assessment
of the validity range of linear response theory and the
importance of nonlinear effects [40–42], and (iii) to check
widespreadmodel assumptions about thedecomposition into
bound and free electrons [22]. Most notably, we present the
first, highly accurate results for the XC kernel of a realistic
WDM system in the static limit (i.e.,ω → 0). Our theoretical
predictions are directly useful for upcoming experiments
with hydrogen, for example at NIF or the European XFEL.
Results.—We have carried out thermal DFT–molecular

dynamics simulations to obtain a set of ion configurations,
and use the PIMC method to obtain exact solutions to the
electronic problem in the external ion potential. This allows
us to directly compare our PIMC results to DFT, and use
the former as input for the latter. We note that we impose
no nodal restrictions on the thermal density matrix [43].
Therefore, our PIMC simulations are without approxima-
tion, but computationally expensive due to the notorious
fermion sign problem [44,45]. We estimate the full com-
putation cost of the present study to be of the order of
Oð107Þ CPU hours. To compute the electronic density
response, we apply an external harmonic perturbation

[40,46–48] of wave vector q and perturbation amplitude
A, which leads to the full electronic Hamiltonian (we
assume Hartree atomic units throughout this work)

Ĥ ¼ −
1

2

XN

l¼1

∇2
l þ Ŵee þ V̂ei þ 2A

XN

l¼1

cos ðq · r̂lÞ: ð1Þ

Here,N ¼ N↑ þ N↓ is the total number of electrons, and we
restrict ourselves to the unpolarized case of N↑ ¼ N↓ ¼
N=2. The operators Ŵee and V̂ei denote the interaction
between the electrons and the external potential due to the
fixed ions, respectively. We use the PIMC method to com-
pute the expectation value of the electronic density in
Fourier space ρðq;AÞ ¼ hρ̂qiq;A, and the sought-after density
response is simply given by Δρðq; AÞ ¼ ρðq; AÞ − ρðq; 0Þ.
The results for the density response of warm dense

hydrogen are shown in Fig. 1 for (a) rs ¼ 2, (b) rs ¼ 4, and
(c) rs ¼ 6 at the electronic Fermi temperature, i.e., θ ¼ 1.
Specifically, we show Δρ=A, and the green crosses (red
circles) depict our new PIMC results for hydrogen [for a
uniform electron gas (UEG) [40] ]; the actual extraction of
the linear-response function via cubic fits is discussed
below. The main qualitative trends are as follows. For the
metallic density of rs ¼ 2, the electrons are only weakly
localized around the ions, and the density response both
qualitatively and quantitatively resembles the behavior of a
UEG at the same conditions. Panel (b) corresponds to a
lower electronic density as it is realized experimentally, for
example, within hydrogen jets [49]. In this case, a sizable
fraction of the electrons is assumed to be involved in bound
states with the protons. Consequently, we observe a starkly
reduced density response compared to the UEG, as only the
unbound (free) electrons react to the external perturbation;
see the discussion of Fig. 2 below. Furthermore, we observe
that the data sets for hydrogen and the UEG converge in
the limit of large A, since the external perturbation will
eventually predominate over the ion potential. Last, Fig. 1(c)

FIG. 1. Perturbation strength dependence of the electronic density response of hydrogen at q ¼ 2πL−1ð0; 0; 2ÞT (q ≈ 1.5qF) at the
electronic Fermi temperature (θ ¼ 1) for (a) rs ¼ 2, (b) rs ¼ 4, and (c) rs ¼ 6. The green crosses show our new PIMC data for
hydrogen, and the red circles corresponding results for a uniform electron gas partly taken from Ref. [40]; note that the statistical error
bars do not exceed the symbol size. The dashed black line shows a cubic fit to the PIMC data for ΔρðAÞ, and the solid blue horizontal
lines the linear-response limit.
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shows results for rs ¼ 6.While being hard to probe in current
experimental setups, these conditions are interesting as a
challenging benchmark for theoretical methods due to the
pronounced impact of electronic XC effects [50,51]. In this
case, we find that the electronic density response is reduced
by an order of magnitude compared to the UEG at small A,
due to the high probability of bound states.
An additional advantage of the present approach is its

capability to study nonlinear effects and, in this way, to
unambiguously assess the validity range of linear response
theory. Overall, we find similar trends for hydrogen as in
previous investigations of the UEG [40,41], although the
manifestation of nonlinear effects is relatively increased in
magnitude and changed in sign at rs ¼ 6.
The central task of the present work is the estimation of

the linear electronic density response function. The density

response at the first harmonic of the original perturbation
(i.e., at the same q) can be expanded in powers of the
perturbation amplitude [41] as Δρðq; AÞ ¼ χðqÞAþ
χcubicðqÞA3, and the dashed black curves depict corres-
ponding fits (see also Ref. [53]) to the PIMC data for
sufficiently small A. The horizontal blue lines depict the
linear coefficient χðqÞ ≔ χðq; 0Þ, i.e., the static limit of the
linear density response function [71]

χðq;ωÞ ¼ χ0ðq;ωÞ
1 − 4π

q2 ½1 −Gðq;ωÞ�χ0ðq;ωÞ
: ð2Þ

Here, χ0ðq;ωÞ can be either the Kohn-Sham response
function [53], or the Lindhard function [28] in the case
of a uniform system. In addition, Gðq;ωÞ ¼ −ðq2=4πÞ ×
KXCðq;ωÞ denotes the local field correction (LFC), which
contains the full wave-vector and frequency-resolved
information about electronic XC effects, and which is
equivalent to the XC kernel KXC usually employed in
the context of TD DFT [35]. Both Gðq;ωÞ and KXCðq;ωÞ
depend on the particular choice of χ0ðq;ωÞ and, in the
context of DFT, on the employed XC functional.
The relevant linear electronic density response is shown

in Fig. 2. The green symbols show our new PIMC results
for different N that have been obtained by following the
fitting procedure of Δρðq; AÞ outlined above for different
wave vectors q. No systematic dependence on the system
size (and, therefore, no dependence on individual snap-
shots) can be resolved, which is consistent to previous
findings for the UEG [52,72,73]. We note that N ¼ 30 is
the maximum possible system size at rs ¼ 2, as it can be
seen by the comparably increased error bars in this case.
The density response of the UEG has been included as
dotted red curves and is in good agreement to the green
symbols at rs ¼ 2; we only observe small deviations
around q ∼ 1.5qF. In stark contrast, there appear pro-
nounced differences between the UEG and hydrogen
(exceeding 30%) at rs ¼ 4, which is a direct consequence
of the increased location of the electrons around the ions. It
is often assumed that the total number of electrons can be
decomposed into a bound and into an effectively free
fraction; we denote the latter as α ¼ Nfree=N in this work.
This leads to the modified parameters rsðαÞ ¼ ð3=4πnαÞ1=3
and θðαÞ ¼ kBT=EF½rsðαÞ�. Empirically, we find that the
choice of α ¼ 0.6 leads to a good qualitative agreement
between the UEG model and our PIMC results for hydro-
gen at rs ¼ 4 for small to intermediate wave numbers, see
the dash-dotted yellow curve in Fig. 2(b). This is close to
the result of α ≈ 0.54 by Militzer and Ceperley [74] based
on a cluster analysis in real space. Interestingly, the
agreement between the PIMC data for hydrogen and the
effective free electron model deteriorates for q≳ 3qF,
where the response of hydrogen even slightly exceeds
the response of the full UEG model. This is a direct

FIG. 2. Electronic density response of warm dense hydrogen at
θ ¼ 1 with (a) rs ¼ 2 and (b) rs ¼ 4 (bottom). Green symbols:
new PIMC results for different N; blue dots: Kohn-Sham
response function within LDA χ0ðqÞ; black stars: corresponding
RPA; dotted red (dash-dotted gray): UEG model with LFC [52]
(in RPA); dashed black: Lindhard function. Also shown for rs ¼
4 are results for the Kohn-Sham response function without XC
effects (gray circles), the corresponding RPA (purple triangles),
the UEG model assuming a free-electron fraction of α ¼ 0.6
(dash-dotted yellow), and the corresponding Lindhard function
(solid gray).
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consequence of the relevant length scale λ ¼ 2π=q and
discussed in detail in Supplemental Material [53].
The blue dots in Fig. 2 depict the Kohn-Sham response

function χ0ðqÞ that has been computed within the local
density approximation (LDA) [75]. For rs ¼ 2, these data
closely resemble the Lindhard function [28] (dashed black)
describing the uniform ideal Fermi gas. This is expected,
as the Kohn-Sham orbitals resemble plane waves when
localization is weak. The black stars show the DFT res-
ponse function within the random phase approximation,
i.e., by setting Gðq; 0Þ ¼ 0 in Eq. (2). This leads to the
correct asymptotes in the limits of large and small q, but
becomes inaccurate around q ∼ 1.5qF where electronic XC
effects are known to be important [24]. For rs ¼ 4, the
Kohn-Sham response function exhibits a more interesting
behavior: for large q, it approaches the Lindhard function
of the full electronic density, whereas it more closely
resembles the reduced Lindhard function corresponding
to α ¼ 0.6 (solid gray) for q≲ 2qF. In other words, some
information about electron-ion correlations, in general, and
about bound states, in particular, is included in the KS
response. Remarkably, the corresponding RPA data are in
good agreement to the exact PIMC results; more so than for
the less strongly coupled case of rs ¼ 2. We also include
the KS response function that has been obtained from a
DFT simulation without any XC effects for rs ¼ 4 as
the gray circles. Interestingly, this leads to substantial
differences compared to the blue dots for q ≲ 3qF, and
to a deterioration in the corresponding RPA response
function (purple triangles).
Our new PIMC results for the electronic density response

of hydrogen give us access to the XC kernel of a realistic
WDM system on a true ab initio level. The results are
shown in Fig. 3 for the same conditions as in Fig. 2. The
dotted red curves show results for the full UEG model [52]
and the dashed black lines show the ALDA [76,77], which
is a parabolic expansion around q → 0. Evidently, the latter
is only appropriate for q < 2qF even in the case of a UEG.
Let us next consider the different results that have been
obtained from our PIMC results for hydrogen for χðqÞ by
inverting Eq. (2) using as input different χ0ðqÞ. The blue
(green) symbols have been obtained using the KS response
within LDA (the Lindhard function). At rs ¼ 2, the DFT
(LDA-based) kernel agrees qualitatively with the LFC of
the UEG. Interestingly, the kernel that has been computed
in terms of the Lindhard function exhibits substantial
deviations to the other data sets over the entire q range
as it has to balance the absence of electron-ion correlations
from χ0ðqÞ, see also Ref. [53].
For rs ¼ 4, the situation is more complicated as none of

the data sets computed from χðqÞ resemble the UEGmodel.
For q≲ 2qF [cf. Fig. 2(b)], the LDA-RPA response
function is in good agreement with the PIMC results,
and the thus extracted LFC is small in magnitude in this
regime. This changes for intermediate q, where the LFC
becomes comparable in magnitude to the UEG model, but

with a negative sign. This is a direct consequence of the
overestimation of the actual response by the RPA in the
case of hydrogen [cf. Eq. (3) in Ref. [53] ], whereas it is
well known [52,72] that the opposite holds for the UEG.
Using the response function of a uniform ideal Fermi gas to
compute the LFC enhances this trend, and the KS response
from a DFT simulation with no XC effects is located in
between. In addition, this means that using either the
ALDA or full UEG model as the XC kernel in a TD
DFT calculation of hydrogen leads to an actually worse
estimation of the electronic density response compared to
the bare RPA at rs ¼ 4.
Conclusion.—In this work, we have presented the first,

highly accurate PIMC results for the static electronic
density response of hydrogen in the WDM regime. This
has allowed us to unambiguously quantify the importance

FIG. 3. Electronic local-field correction GðqÞ ¼ Gðq; 0Þ
[cf. Eq. (2)] of warm dense hydrogen for rs ¼ 2 (a) and
rs ¼ 4 (b). Dotted red lines: UEG model [52]; blue (green)
symbols: solving Eq. (2) for the LFC using for χ0ðqÞ the Kohn-
Sham response within LDA (the response function of an ideal
uniform Fermi gas [78]). The black dashed line gives the ALDA
kernel. Also shown are results for the UEG model under the
assumption of a free-electron fraction of α ¼ 0.6 (dash-dotted
yellow) and for the LFC using as input the KS response computed
without any XC effects (purple symbols) for rs ¼ 4.
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of nonlinear effects, which are even more important com-
pared to the previously investigated case of a uniform elec-
tron gas [40,41,79]. Moreover, we have obtained extensive
data for the exact linear-response limit of the static density
response function χðq; 0Þ, which have been used to extract
the first exact results for the static LFCGðqÞ and XC kernel
KXCðqÞ. We stress that the latter in general depends on the
employed χ0ðq; 0Þ, which can be either a Lindhard function
or a Kohn-Sham response function that depends on the
particular choice of the XC functional. This has profound
consequences in the presence of bound states, where the
actual XC kernel does not even qualitatively resemble
the familiar UEG models. Consequently, the commonly
employedALDA [76,77] is appropriatewhenmost electrons
are free and behave similarly to a UEG, but dramatically
breaks down when the degree of electronic localization
around the protons is substantial; see Supplemental
Material [53] for a corresponding TD DFT study.
Our results indicate a strong need for the development

and re-evaluation of presently used model XC kernels such
as ALDA. A particular advantage of our study is given by
the direct possibility to compare our PIMC results for
different properties to corresponding DFT results for the
same ion configuration. This, in turn, will give us invalu-
able lessons regarding the performance of different XC
functionals [37,80], and guide the development of new
approaches [81–85]. Finally, we reiterate the capability of
our setup to study nonlinear effects in warm dense hydro-
gen, which may give unprecedented insights into many-
body correlation effects in WDM [42] and are known to
sensitively depend on important system parameters such as
the electronic temperature [86].
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