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High-order topological phases, such as those with nontrivial quadrupole moments [1,2], protect edge
states that are themselves topological insulators in lower dimensions. So far, most quadrupole phases of
light are explored in linear optical systems, which are protected by spatial symmetries [3] or synthetic
symmetries [1,2,4–7]. Here we present Floquet quadrupole phases in driven nonlinear photonic crystals
that are protected by space-time screw symmetries [8]. We start by illustrating space-time symmetries by
tracking the trajectory of instantaneous optical axes of the driven media. Our Floquet quadrupole phase is
then confirmed in two independent ways: symmetry indices at high-symmetry momentum points and
calculations of the nested Wannier bands. Our Letter presents a general framework to analyze symmetries
in driven optical materials and paves the way to further exploring symmetry-protected topological phases in
Floquet systems and their optoelectronic applications.
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Symmetry plays an important role in topological phases
[9–14]. Examples include topological insulators that are
protected by time-reversal symmetry [15,16], Chern insula-
tors that require breaking time-reversal symmetry [17–20],
and topological crystalline insulators [21] that are protected
by spatial symmetries such as rotation and reflection. One
important class of topological crystalline insulators is high-
order topological insulators [1,6,7,22–27], where the inter-
esting physical consequences appear in spaces two or more
dimensions lower than the bulk. For example, quadrupole
topological insulators in two dimensions, characterized by
their quantized and nontrivial second-order moments,
protect zero-dimensional corner states with fractional
occupations. So far, most studied quadrupole phases of
light are protected by synthetic symmetries in the lattice
model—such as the notion of π fluxes [1,5,7]—or spatial
symmetries such as the fourfold rotation [3]. Moving
beyond linear optics, a different class of Floquet topologi-
cal phases can be found in nonlinear materials driven by
time-varying fields. While some examples of Floquet
topological phases have been explored [4,28–30], detailed
symmetry analysis, in both space and time, and the
general recipe to achieve symmetry-protected topological
phases in driven nonlinear optical systems remain largely
unexplored.
Here we present Floquet quadrupole phases in driven

nonlinear PhCs, where the quadruple moments are quan-
tized and protected by a space-time screw symmetry,
involving both rotation in space and translation in time.
This differs from previous studies, which are based on
purely spatial symmetry [3,31] or the tight-binding
approximation. While space-time screw symmetry also

exists in other systems (e.g., circularly shaken cold atom
lattices [32–34] and light irradiated graphene [35–37]),
previous studies mostly focus on Chern insulators, which
do not rely on the space-time symmetries, leaving them
largely unexplored. Differently, our Floquet quadrupole
phase here is protected by space-time symmetry. We define
and analyze this space-time symmetry in a specific example
of driven GaAs before presenting the detailed design of a
Floquet quadrupole PhC. The nontrivial quadrupole
moment is then confirmed with the numerical calculations
of the nested Wilson loops. Finally, we demonstrate key
features associated with quadrupole phases, including
fractional corner occupations and filling anomalies [3,22].
We first define the space-time screw symmetry in a

driven nonlinear medium. As shown in Fig. 1(a), a circu-
larly polarized field Ed ¼ Ed cosðΩtÞx̂þ Ed sinðΩtÞŷ peri-
odically drives a uniform slab of GaAs. This driving field
couples to the second-order nonlinear susceptibility of

FIG. 1. Space-time screw symmetry in a driven nonlinear
medium. (a) Schematic of a uniform slab of GaAs driven by a
circularly polarized field Ed incident from the normal direction.
(b) All three instantaneous optical axes of the driven medium,
ê1−3, spin around the z axis. (c) Screw symmetry can be found in
each of the optical axes, defined through a combination of
rotation in space (x, y) and translation in time (t).
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GaAs, χð2Þxyz and its permutations, and gives rise to a time-
dependent permittivity:

¯̄εðtÞ ¼

0
B@

ε 0 α sinðΩtÞ
0 ε α cosðΩtÞ

α sinðΩtÞ α cosðΩtÞ ε

1
CA: ð1Þ

Here, ε is the linear permittivity of GaAs that is isotropic

and α ¼ 2χð2ÞxyzEd is the nonlinear perturbation. Higher-
order perturbations are ignored here under the assumption
of a weak driving field. To determine the symmetry of this
driven medium, we analyze the temporal evolution of its
three optical axes:

ê1 ¼ cosðΩtÞx̂ − sinðΩtÞŷ;

ê2 ¼
1ffiffiffi
2

p ½sinðΩtÞx̂þ cosðΩtÞŷ − ẑ�;

ê3 ¼
1ffiffiffi
2

p ½sinðΩtÞx̂þ cosðΩtÞŷþ ẑ�: ð2Þ

As shown in Fig. 1(b), all three optical axes spin around the
z axis at the driving frequency Ω. We can further trace out
the trajectory of the optical axes in both space (x, y) and
time (t). An example for ê1 is shown in Fig. 1(c), which
evolves along a helix. This provides the foundation for our
symmetry analysis below.
First, we note that the driving field breaks the continuous

rotation symmetry of the isotropic linear permittivity of
GaAs; namely, the helix in Fig. 1(c) does not return to itself
if it is rotated by some general angle in the xy plane (e.g.,
90°). Instead, it has a symmetry involving a compound
operation with a rotation in space and a shift in time. For
example, one can first rotate the helix by 90° along the
counterclockwise direction in the xy plane (C4) and then
translate it by T=4 in time (T̂T=4). Here T ¼ 2π=Ω is the
periodicity of the driving field. For convenience, we denote
this space-time screw operation as

S̃4 ¼ ÔC4
× T̂T=4: ð3Þ

Naturally, if one repeats this S̃4 operation four times, the
whole system evolves in time by a full periodicity T and,
thus, remains unchanged. Under this requirement of
ðS̃4Þ4 ¼ 1, the four allowed S̃4 symmetry indices are �1
and �i. The symmetry of this driven medium can also be
derived by checking the commutation rules between
various symmetry operations and the time-dependent non-
linear permittivity, reaching the same conclusions. See
Sec. I of the Supplemental Material [38] for more details.
We stress that, as the symmetry analysis is on the

effective permittivity, it is not uniquely defined by the
driving field; instead, it also depends on the exact form of
optical nonlinearity provided by the material. For example,

an x-cut LiNbO3 driven by a z-polarized field will have
not a space-time symmetry but a purely spatial symmetry
of Cx

2 [31].
Next, we present a concrete example of Floquet quadru-

pole photonic crystal (PhC) that is protected by this space-
time symmetry of S̃4. The 2D PhC consists of veins and
disks made from GaAs in the air, and one unit cell with
periodic boundaries is presented in Fig. 2(a). Veins of
width w ¼ 50 nm form a square lattice of periodicity
a ¼ 500 nm. Four disks of diameter d ¼ 348 nm are
arranged in a C4 symmetric way in each unit cell. The
calculated PhC band structure, eigenfrequencies ω as
functions of momentum k, is shown in Fig. 2(b), where
TE modes ðEx; Ey;HzÞ and TM modes ðHx;Hy; EzÞ are
colored in blue and red, respectively. By engineering the
location and size of the disks, four of the bands are well
isolated from the rest, each residing inside a TE or TM band
gap that is shaded in blue or red.
A circularly polarized driving field Ed is applied on the

PhC and the topology is further explored by studying the
Floquet eigenstates. These Floquet eigenstates can be
probed by a weak probe beam in a potential experimental
demonstration using a pump-probe setup. The pump
field Ed is nondepletable, which solely defines the time-
dependent permittivity. Thus, similar to our previous
analysis, the spatial rotation symmetry C4 is broken in
this PhC. Instead, the PhC now has a space-time screw
symmetry S̃4, which quantizes bulk dipole and quadrupole
moments. See Sec. II in the Supplemental Material [38] for
detailed derivations. The bulk quadrupole moment qxy of
two isolated bands can be evaluated using the S̃4 symmetry
indices at their high-symmetry momentum points as

ei2πqxy ¼ S̃þ4 ðΓÞS̃þ�
4 ðMÞ ¼ S̃−4 ðΓÞS̃−�4 ðMÞ: ð4Þ

Since four applications of S̃4 restore the system, we have
ðS̃4Þ4 ¼ 1 and ðS̃4Þ2 ¼ �1. Here in Eq. (4), S̃�4 refers to the
S̃4 eigenvalue of a mode with an ðS̃4Þ2 eigenvalue of �1.
Naturally, S̃þ4 ¼ �1 and S̃−4 ¼ �i. Based on these sym-
metry indices at high-symmetry momentum points, we
observe that ei2πqxy ¼ �1 give rise to trivial (nontrivial)
quadrupole moment qxy ¼ 0ð1=2Þ. Based on this forma-
lism, we later show how to achieve nontrivial quadrupole
moments through driving fields.
To find the Floquet eigenstates of this driven PhC and

their relevant S̃4 indices, we solve the Floquet eigenvalue
problem of Maxwell’s equations, following our previous
theoretical framework [29]. We note that since the Floquet
eigenstates are free to exchange energy with the non-
depletable pump by emitting or absorbing a pump photon
the Floquet eigenvalue problem is generically non-
Hermitian [39]. In short, we expand the Floquet eigenstates
using the Floquet basis as ΦðtÞ ¼ e−iλt

P
jm cjmjj; mi and

then compute the Floquet eigenvalues λ and coefficients
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cjm. Floquet basis states jj; mi ¼ jjieimΩt are essentially
copies of the static PhC eigenstate jji, but shifted in
frequency by mΩ. One example is the Floquet basis
j4;−1i shown in Fig. 2(b), which is shifted down by Ω
from j4; 0i.
To understand the S̃4 indices of the Floquet eigenstates,

we start by comparing the symmetries under C4 and the
compound operation S̃4.

ÔS̃4
jj; mi ¼ ðζj × imÞjj; mi; ð5Þ

ÔS̃4
jj; 0i ¼ ζjjj; 0i: ð6Þ

Here ÔS̃4
refers to the space-time screw operation on a

time-dependent vector field. One example of the ÔS̃4
operation is shown in Sec. II in the Supplemental
Material [38]. Namely, the S̃4 index depends on the band
information j and the Floquet order m. For example, for
m ¼ 0, the S̃4 index reduces to C4 index ζj of jji; for
m ¼ �1, the S̃4 index is changed by �i. This dressing
process can also be understood intuitively without the
Floquet basis by checking the spatial symmetry indices of
the nonlinear dipoles of sum or difference frequency
generation. Our detailed derivations can be found in
Sec. III of the Supplemental Material [38]. Naturally, the
S̃4 index of a Floquet eigenstate is the same as that of all of
its constituting Floquet basis.
We now apply this symmetry analysis to our specific

setup and compute the quadrupole moment. When the
Floquet basis j4; 0i shifts down in frequency to j4;−1i, its
S̃4 index at Γ changes from −1 to þi, which is now the
same as the S̃4 index of j2; 0i. Naturally, the two Floquet
basis, j4;−1i and j2; 0i, will couple to each other under a

driving field, resulting in an energy splitting Δω between
them. This energy splitting increases linearly with the
driving field strength [Fig. 2(c)], lifts the degeneracy
between static states j2; 0i and j3; 0i, and opens a new
(Floquet) energy gap. Using Eq. (4), the quadrupole
moment of the two bands below the Floquet gap, j1; 0i
and j2; 0i, can be evaluated as ei2πqxy ¼ −1 and qxy ¼ 1=2;
namely, we have now achieved a Floquet quadrupole phase.
Next, we confirm the Floquet quadrupole phase through

direct calculations of the nestedWannier bands. To this end,
we first compute the Wannier bands νx;y of the two Floquet
bands of interest, j1; 0i and j2; 0i, which are the phases of
the eigenvalues of the Wilson loop WxðyÞ;kiþ2πx̂ðŷÞ←ki

. The
Wilson loop is defined based on the inner product of
adjacent Floquet states in a period-averaged way. We note
that due to the non-Hermitian form of our formula, the
inner product is defined with left and right eigenvectors.
Our results, shown in the upper panel of Fig. 3(a), confirm
that we have vanishing dipole moments in both directions:
px ¼ py ¼ 0. Besides an energy gap [Fig. 2(c)], the driving
field also opens a Wannier gap between the two Wannier
bands [Fig. 3(b)], which are gapless without a driving field.
This Wannier gap allows one to separate the Wannier bands
into two sectors, ν�, and obtain the nested Wannier bands

p
ν�
yðxÞ
xðyÞ by computing the nested Wilson loop. The nested

Wilson loop is defined with Wannier band basis, which are
eigenvectors of the Wilson loops. Our results, shown in
the lower panel of Fig. 3(a), confirm that our driven
PhC indeed has a nontrivial quadrupole moment of
qxy ¼ 2p

ν−y
x pν−x

y ¼ 1=2. Details of the calculation are pre-
sented in Sec. IV of the Supplemental Material [38].
Finally, we present the physical consequences of Floquet

quadrupole PhCs in the contexts of corner states and filling

FIG. 2. Space-time symmetry indices of photonic bands dressed by optical nonlinearity. (a) Schematic drawing of a square GaAs PhC
unit cell with periodicity Na (N ¼ 8), consisting of veins of width w and spacing a as well as 4 disks of diameter d. (b) The PhC band
structure, including both TE (blue lines) and TM bands (red). The S̃4 symmetry indices are labeled at the high-symmetry momentum
points (Γ andM) of each band. If driven by an external field, Floquet basis sharing the same S̃4 index, such as j4;−1i and j2; 0i at Γ, will
couple to each other, which leads to an energy splitting of Δω and opens a new gap in the Floquet spectrum. (c) The energy splitting Δω
increases linearly with the driving field strength E.
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anomalies. We start by computing the eigenstates in a
N × N supercell of Floquet quadrupole PhCs surrounded
by perfect electric conductors (PECs). Our specific setup
with N ¼ 10 is shown in Fig. 4(a). There is a thin gap
between the supercell and the PECs. The eigenstates are
labeled in the order of their Floquet eigenvalues. Similar to
other quadrupole phases [3,5], we also observe 4 degenerate
states in the energy gap [states 199–202 in Fig. 4(b)], which
are localized at the four supercell corners. Because of the
lack of chiral symmetry expanded around a nonzero
frequency in Maxwell’s equations, these corner states are
not pinned to the center of the energy gap; instead, they can
shift up or down in frequency or even merge into the bulk
continuum. A filling anomaly is also confirmed in our
system by noting the incompatibility between the number
of eigenstates below the Floquet gap (2N2 − 2 ¼ 198) and
the number of unit cells in the supercell (N2 ¼ 100). Our
quadrupole phase is further confirmed by the fractional

occupations at the corners, which is an integral of the mode
density over the occupied bands, as shown in Fig. 4(c). In
these calculations, the disk diameter d is tuned to place the
corner-state frequency in the middle of the Floquet gap.
Details of the calculation are presented in Sec. V of the
Supplemental Material [38].
In summary, we present Floquet quadrupole phases that

are protected by the space-time screw symmetry in a driven
nonlinear PhC. The parameters used in our calculations are
practical, and the proposed system can be readily studied in
nonlinear optical experiments. Furthermore, while our
example focuses on GaAs, the space-time symmetry
analysis applies to the vast range of nonlinear materials,
opening the door to further explorations into new topo-
logical phases and consequences in driven systems, such as
symmetry-protected topological classification [40] and
topological quantum chemistry [41]. Finally, our general
formalism of understanding Floquet topological phases in
driven systems can extend beyond photonics into other
nonlinear wave systems, including phononics, piezoelec-
trics, piezomagnetics, and polaritonics.
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FIG. 3. Confirmation of quadrupole phases through Wannier
band calculations. (a) Calculated Wannier bands and nested
Wannier bands for the first two Floquet bands. The results
confirm the vanishing dipole moments px ¼ py ¼ 0 and the
nontrivial quadrupole moment qxy ¼ 1=2. (b) The gap between
the two Wannier bands is opened by the external driving field.
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FIG. 4. Physical consequences of corner states and filling
anomaly. (a) Schematic of a 10 × 10 supercell of Floquet
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(b) The eigenvalue spectrum confirms the existence of corner
states and the filling anomaly in our system. (c) Accumulative
time-averaged energy density profile of the first 200 eigenstates,
showing fractional occupations (2� 0.5) at the four corners.
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