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As the field of optomechanics advances, quadratic dispersive coupling (QDC) represents an increasingly
feasible path toward qualitatively new functionality. However, the leading QDC geometries generate linear
dissipative coupling and an associated quantum radiation force noise that is detrimental to QDC
applications. Here, we propose a simple geometry that dramatically reduces this noise without altering
the QDC strength. We identify optimal regimes of operation, and discuss advantages within the examples
of optical levitation and nondestructive phonon measurement.
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Introduction.—The field of optomechanics [1] explores
the forces exerted by light, increasingly accessing the
quantum regime with an eye toward sensing, information,
and fundamental tests of macroscopic quantum motion. To
date, the vast majority of experimental breakthroughs—
e.g., room-temperature broadband squeezing [2], measure-
ment near the Heisenberg limit or below the standard
quantum limit [3,4], quantum transduction [5], and gene-
ration of quantum motion [6]—have been achieved in
systems having so-called linear dispersive coupling (LDC),
wherein an optical resonance frequency depends linearly
on mechanical displacement. As the field advances, sys-
tems exhibiting purely quadratic dispersive coupling
(QDC), wherein the optical frequency depends on the
displacement squared, promise another wave of applica-
tions that are qualitatively different than can be achieved
with LDC, including quantum nondemolition (QND) read-
out of the phonon number [7–13] or shot noise [14],
generation of exotic and non-Gaussian quantum states [15–
19], nonreciprocal photon control [20], phonon blockade
[21], two-phonon cooling [16,22], mechanical squeezing
[23], and stable center-of-mass [24,25] or torsional [26]
optical traps for geometry tuned [27], and ultrahigh-Q
[25,28] mechanical systems. Currently, the number of LDC
applications far outstrips that of QDC, which is not
surprising: LDC is the leading-order effect most easily
realized experimentally, and so it is sensible to pursue LDC
applications while developing the techniques and under-
standing required for higher order coupling. As linear

applications transition from proof-of-concept demonstra-
tions to engineering, the forefront of fundamental discovery
will shift to new optomechanical interactions, with a natural
next step being QDC.
QDC optomechanical systems can mostly be mapped

onto a canonical “membrane-in-the-middle” (MIM) [7,9]
paradigm, wherein a partially reflective, flexible membrane
splits a Fabry-Perot cavity into two identical subcavities,
such that their LDCmutually cancels, producing pure QDC
to leading order. This configuration has been successfully
realized with a membrane in a macroscopic [7] or micro-
scopic [29] cavity, on-chip [30,31] (and with qubits
[32,33]), levitated [34], and with atomic clouds [35].
Notably, extraordinarily sensitive applications such as
quadratic cooling [34], phonon number sensitive measure-
ments [32], and mechanical energy squeezing [33] are now
viable.
Importantly, QDC is always accompanied by a linear

dissipative coupling [36–43], introducing associated quan-
tum radiation force noise (QRFN) [10,44,45] that restricts
possibilities, especially in the quantum regime [10,44,45].
Gaining control over this fundamentally quantum source of
noise is therefore of paramount importance.
Here we propose an optomechanical geometry that

dramatically reduces QRFN without compromising the
strength of QDC. Specifically, our system exploits two
nonidentical subcavities, a situation readily realized in the
canonical system by displacing the membrane. A previous
classical wave analysis showed that a membrane displaced
towards the back mirror in an idealized “single-port”
system (one in which optical loss is entirely through the
input mirror) can exhibit reduced linear coupling between
displacement and the cavity’s total dissipation [46], sug-
gesting (without proof) the possibility of suppressed QRFN
when there are no internal losses. Here, we present the
requisite full quantum analysis to prove this conjecture, and
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quantify its ultimate limits in the presence of losses. In the
ideal single-port case, QRFN can indeed be reduced by
many orders of magnitude via subcavity asymmetry (mean-
ing previous theoretical limits [10,44] are not fundamental);
and with finite internal loss, our analysis identifies the
optimal asymmetry that minimizes QRFN, notably still
achieving several orders of magnitude reduction with
realistic device parameters. We then discuss how this
enables cavity-assisted optical levitation with noise below
that of free-space traps (or MIM systems) and similarly
improves QND phonon number measurements.
Quantum model.—For illustrative purposes,wenow focus

on the membrane-cavity geometry drawn in Fig. 1(a),
stressing that this serves as a canonical system representing
all such QDC systems; similar results and general expres-
sions are provided in the Supplemental Material [47]. The
setup comprises a cavity of length L partitioned into two
subcavities by a membrane with (field) transmission
jtmj ≪ 1. Including the membrane’s displacement operator
x̂, the lengths of the subcavities areL1 þ x̂ andL2 − x̂, where
L1 and L2 ≡ L − L1 are chosen such that the subcavities are
degenerate at frequency ω0 ¼ N1πc=L1 ¼ N2πc=L2 for
integers N1 and N2. The Hamiltonian of the photonic fields
Ĥopt ¼ Ĥ1 þ Ĥ2 þ Ĥc, where, to leading order in x̂, the

subcavity energies Ĥj ¼ ℏ½ω0 þ x̂ð−1Þjω0=Lj�â†j âj for j ¼
1, 2, and âj is the photon annihilator.Membrane transmission
couples the subcavities via Ĥc ¼ −ℏJðâ†1â2 þ â†2â1Þ at a rate
J ¼ cjtmj=ð2

ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p Þ [47].
In contrast to a MIM setup, to obtain purely QDC, the

mean position of the membrane needs to be displaced to a
“quadratic point” [Fig. 1(b)]. We first define the mem-
brane’s quantum motion ẑ around the classical displace-
ment Δx, i.e., x̂≡ Δxþ ẑ where Δx ≪ Lj, such that the
optical Hamiltonian can be generally rewritten as

Ĥopt ¼ Ĥp þ ẑF̂opt; ð1Þ

where Ĥp involves only photonic fields, and

F̂opt ¼ ℏω0ðâ†1â1=L1 − â†2â2=L2Þ ð2Þ

is the radiation force [52]. At anyΔx, the eigenmodes of Ĥp

can be expressed succinctly as

â�ðΔxÞ ¼ cosðθ�Þâ1 þ sinðθ�Þâ2; ð3Þ

where the amplitudes satisfy cotð2θ�Þ ¼ �Lω0Δx=ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
cjtmj. In terms of â�, Ĥp¼ℏωþâ

†
þâþþℏω−â†−â−≡

ĤþþĤ−, with eigenfrequencies

ω� ¼ ω0 þ
ðL2 − L1Þω0Δx

2L1L2

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Lω0Δx
2L1L2

�
2

þ J2

s
; ð4Þ

while F̂opt¼hþâ
†
þâþþhcðâ†þâ−þ â†−âþÞþh−â†−â−, with

coefficients hþ, hc, h− depending on the eigenmode
composition (and thus Δx).
The dispersive coupling associated with the � modes is

generally linear (i.e., the adiabatic eigenfrequencies depend
linearly on position to leading order), with exceptions at
membrane displacements

Δx� ¼ � cjtmj
2ω0

L1 − L2

L
; ð5Þ

where the frequency of one eigenmode exhibits QDC to
leading order in ẑ (i.e., h� ¼ 0 at Δx�). For simplicity, we
focus onΔxþ hereafter, since the key results are identical at
Δx−. The leading coherent optomechanical effect on âþ is
tunnelling with â−, but, due to the separation of eigen-
frequencies [Eq. (4)], â− can be adiabatically eliminated—
an approximation that does not hold if the frequency
splitting 2J becomes comparable to the mechanical fre-
quency Ωm [13]—and the âþ dynamics are governed by
pure QDC via

Ĥþ ¼ ℏ

�
ωþ þ 2ω2

0

cjtmjL
ẑ2
�
â†þâþ: ð6Þ

(a)

(b)

FIG. 1. Membrane-cavity system. (a) Fabry-Perot cavity asym-
metrically split by a membrane (blue) of transmission jtmj into
two subcavities of lengths Lj. The subcavities are coupled to each
other through the membrane at rate J. Drive and detection are
conducted through external coupling at rates κextj , while photons
are lost at rates κintj . (b) Cavity transmission versus membrane
position Δx and drive detuning Δ≡ ωin − ω0. In this example,
jtmj2 ¼ 7 × 104 ppm, jt1j2 ¼ 6 × 104 ppm, jt2j2 ¼ 4 × 104 ppm,
and L1=L2 ¼ 103. Grey dashed lines show the uncoupled (J ¼ 0)
subcavity frequencies ωin ¼ ωj ≡ ω0½1þ ð−1ÞjΔx=Lj�; orange
dashed lines show eigenfrequencies ω�.
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Importantly, this shows that the overall QDC strength is
determined only by the total cavity length L, with no
dependence on Lj, in agreement with classical wave
analysis [46]: at a quadratic point, the subcavity circulating
powers are balanced, applying no net force (otherwise there
would necessarily be LDC), and the power imbalance
arising from displacing the membrane is then determined
solely by the membrane scattering coefficients and incident
field phases, which remain unchanged when adjusting Lj

by an integer number of half-wavelengths.
Dissipative force noise.—The effective adiabatic

Hamiltonian in Eq. (6) is purely quadratic in ẑ, but coupling
to an external environment generates linear dissipative
backaction. The external coupling and internal loss rates
are, respectively,

κextj ¼ cjtjj2=ð2LjÞ; κintj ¼ cLj=ð2LjÞ; ð7Þ

where tj is the end-mirror field transmission, and Lj is the
round-trip photon loss fraction for subcavity j, such that the
total round-trip loss T j ¼ jtjj2 þ Lj. The associated QRFN
power spectral density SFFðωÞ ¼

R
eiωthδF̂ðtÞδF̂ð0Þidt

(where δF̂≡ F̂opt − hF̂opti is the optical force fluctuation
[53]), quantified in different limits below.
Ideal single-port cavity.—To illustrate the fundamental

potential for improvement, we first consider a single-port
cavity (κint2 ¼ κext2 ¼ 0). In the presence of drive, SFFðωÞ
can be calculated from linearized Heisenberg-Langevin
equations of motion [53]. If âþ mode is driven through
mirror 1 at frequency ωin, the QRFN spectral density
becomes [47]

SFFðωÞ ¼ ℏ2jāþj2κ1L
�

ω0

L1L2

�
2

×
jL2χ̃11ðωÞ þ iL1Jχ�2ð0Þχ̃21ðωÞj2

j ffiffiffiffiffiffi
L1

p þ i
ffiffiffiffiffiffi
L2

p
Jχ2ð0Þj2

; ð8Þ

where jāþj2 is the mean photon number, κj ≡ κextj þ κintj is
the total loss rate of subcavity j, χjðωÞ ¼ ½−iðωin − ω0 þ
ð−1Þjþ1ω0Δxþ=Lj þ ωÞ þ κj=2�−1 is the susceptibility,
and χ̃lm are matrix elements of the eigenmode susceptibility

χ̃ ðωÞ ¼ 1

χ−11 ðωÞχ−12 ðωÞ þ J2

�
χ−12 ðωÞ iJ

iJ χ−11 ðωÞ

�
: ð9Þ

In the “large-gap” limit 2cjtmj=L ≫ κ1, κ2, jωj, and when
the drive is resonant with âþ (ωin ¼ ωþ),

SFFðωÞ →
�
2L2

L

�
2 ℏ2jāþj2ω2

0

c2jtmj2
ω2κþ

ω2 þ κ2þ=4
; ð10Þ

where the âþ decay rate is κþðΔxþÞ ¼ κ1L1=L. The
frequency dependence arises from a combination of the

cavity mode’s “low-pass” response (bandwidth κþ)
and destructive interference with the promptly reflected
drive [36] at low frequencies. Inspecting the first factor,
the fundamental advantage of our setup becomes clear:
when the membrane is positioned near the back mirror,
(L2 ≪ L1 ≈ L), QRFN is suppressed by a factor ð2L2=LÞ2.
Here, the backaction is entirely due to the cavity mode’s
total dissipative coupling ∂xκþ [36,44] leaking information
about membrane position. Classically [46,47], the gradient
∂xκþ is maximal with the membrane near the front mirror
(the resulting “compound input mirror" has an overall
transmission modulated by membrane motion) and mini-
mal when the membrane is near the back mirror, which is
already so reflective that the membrane does not impact κþ.
In a centimeter-scale cavity with wavelength-scale mem-
brane-mirror separation, this suppression factor can reach
ð2L2=LÞ2 ∼ 10−8 relative to a MIM system (L2 ¼ L=2).
We stress that this is achieved while the quadratic coupling
in Eq. (6) remains unchanged. Notably, this simple result
illustrates that the “standard quantum limit” [10] for
quadratic readout in these MIM systems, which persists
even in ideal, lossless, single-port systems [44], is not
fundamental.
Lossy cavity.—Including losses via L1 and T 2 [47],

SFFðωÞ ¼
ℏ2jāþj2ω2

0

c2jtmj2
L2

L2

4L1κ−ω
2 þ Lκ2þκ2

ω2 þ κ2þ=4
; ð11Þ

where the eigenmode dissipation rates are κþ ¼ κ1L1=Lþ
κ2L2=L and κ−¼κ1L2=Lþκ2L1=L. Compared to Eq. (10),
the loss ports have introduced noise that is not suppressed
as ω → 0, since those ports have no reflection with which
to interfere. Since membrane motion linearly modulates the
subcavity amplitudes [via Eq. (3)], this term can be thought
of as the backaction associated with position information
encoded in the relative power escaping the two subcavities.
Additionally, because κ2 [part of κ− in Eq. (11)] scales
inversely with L2, QRFN cannot be suppressed indefinitely
by shrinking the second subcavity. Instead, SFFðΩMÞ
reaches a minimum at an optimal first subcavity length [47]

L1;min ¼
T 1

T 1 þ T 2

L: ð12Þ

One might have guessed this location, since it balances the
subcavity loss rates (κ1 ¼ κ2), such that the total loss
gradient ∂xκþ ¼ 0 (κþ is always a weighted sum of κ1
and κ2), thereby preventing additional position information
(beyond that encoded in the relative subcavity powers)
from leaving the cavity. Finally, at quadratic points near
L1;min, the QRFN at mechanical frequency Ωm becomes

Smin
FF ðΩmÞ ¼ 2

ℏ2jāþj2ω2
0

cLjtmj2
T 2

1þ 4BΩ2
m=κ2þ

1þ 4Ω2
m=κ2þ

; ð13Þ
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where B≡ T 1=ðT 1 þ T 2Þ. To get a sense of potential
improvement in laser-driven cavities with dielectric mir-
rors, e.g., Fig. 2 shows these results for a variety of
experimentally feasible parameters. The dashed line shows
the predicted optimal suppression in a modified form of the
“resolved-sideband” regime [47] Ωm ≫ κþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lκ2=4L1κ−

p
wherein the above expression simplifies to

SFFðΩmÞ → 4
ℏ2jāþj2ω2

0

c2jtmj2
L1L2

L2
κ− ð14Þ

with an optimal value

Smin
FF ðΩmÞ → 2

ℏ2jāþj2ω2
0

cLjtmj2
T 1T 2

T 1 þ T 2

; ð15Þ

and a noise suppression (relative to MIM)

Smin
FF ðΩmÞ

SMIM
FF ðΩmÞ

¼ 4
T 1T 2

ðT 1 þ T 2Þ2
→ 4

T 2

T 1

; ð16Þ

where the last step is in the near-single-port limit T 1 ≫ T 2.
Note this result highlights that QRFN cannot be estimated
from the total loss gradient ∂xκþ, which is why an ideal,
balanced MIM system exhibiting ∂xκþ ¼ 0 has such a strict
limit for QND measurement [10]. As shown in the inset,
our scheme is most advantageous in the single-port limit
(larger jt1j2), with diminishing returns in the deeply

unresolved sideband regime. Importantly, QRFN for these
“typical” parameters can be suppressed by more than 2
orders of magnitude (and beyond with larger L and/or Ωm).
Equations (13) and (16) comprise our main result: QRFN

can be significantly suppressed by introducing asymmetry
to the underlying subcavity modes, and without reducing
the QDC strength. Note this suppression ultimately
depends on how “single-port” and “resolved-sideband”
the cavity is, and similar reduction can be achieved with
very different overall losses. This result directly benefits all
QDC applications, and we now discuss the illustrative
examples of levitation and QND measurement.
Optical levitation.—By placing a minimally supported

reflector at a quadratic point, the reflector’s motion can be
optically trapped. For a resolved-sideband cavity driven at
ωin ¼ ωþ ≈ ω0, the dispersive optical spring constant at
Δxþ is ℏω00jāþj2 ≈ ð8=jtmjÞðωinP̄circ=c2Þ, with ω00=2 ¼
2ω2

0=cjtmjL taken from Eq. (6). This spring constant is
identical to that of a standingwave in free space for the same
circulating power P̄circ. However, a free space trap’s QRFN
SFSFF≈8ℏωinP̄in=c2, meaning our optimal membrane-
cavity system has a relative force noise (from Eq. (15)

Smin
FF ðΩmÞ
SFSFF

¼ 1

2jtmj2
T 1T 2

T 1 þ T 2

→
T 2

2jtmj2
; ð17Þ

with the last expression in the nearly single-port limit.
Stated briefly, as long as most of the back-cavity light
leaves through the membrane (i.e., jtmj2 ≫ T 2), QRFN can
be significantly suppressed relative to free space (or MIM).
Furthermore, P̄circ in a cavity system is achieved with
significantly less input power, making it far easier to realize
a quantum-limited light source that actually reaches this
QRFN limit. This also comes without the instabilities
associated with a LDC spring (e.g., antidamping [1]).
QND phonon measurement.—In the resolved-sideband

regime, QDC measures time-averaged mechanical energy,
enabling quantum nondemolition (QND) readout of the
phonon number [7,9,47]. This is traditionally proposed
assuming a near-single-port cavity, which benefits from
increased collection efficiency ∼jt1j2=ðT 1 þ T 2Þ and other
technical advantages. We quantify the quantum-limited
performance of such measurements with the ratio of
measurement rate Γmeas to backaction rate ΓBA;n [10], a
figure of merit that exceeds one when it is possible to
resolve phonon number state n before QRFN causes a
jump. For our setup, when âþ is driven on resonance, this
ratio becomes (again assuming large-gap and modified
resolved-sideband limits) [47]

Γmeas

ΓBA;n
¼ 64

2nþ 1

�
g1g2
κ−κþ

��
κext1

κþ

L1

L

�
≡ x2ZPF

x2res
; ð18Þ

where gj ¼ ω0xZPF=Lj is the single-photon optomechan-

ical coupling rate for subcavity j, and xZPF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩm

p
is the zero-point fluctuation of the membrane (mass m).
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FIG. 2. SFFðΩmÞ relative to MIM, for a “typical” canonical
setup: cavity length L ¼ 10 cm, transmissions jtmj2 ¼ 104 ppm
[54] and jt2j2 ¼ 0, losses Lj ¼ 1 ppm [55,56], and mechanical
frequency Ωm ¼ 2π × 240 kHz, with a wide range of input
transmissions jt1j2. The solid (dashed) curves are in the resolved
(unresolved) sideband regime, and markers indicate optimal
membrane position [Eq. (12)]. For jt1j2 ¼ 103 ppm, the force
noise can be reduced by a factor of 250. Inset: optimal reduction
of force noise. The shading indicates the unresolved sideband
regime, and the dotted line corresponds to the resolved-sideband
approximation [Eq. (16)].
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We define a “resolvable variance” x2res—the value of x2ZPF
needed to achieve unity Γmeas=ΓBA;n—as our figure of merit
because it solely depends on the optical properties of our
system, unlike Γmeas=ΓBA;n. The factor κext1 L1=κþL cap-
tures the cavity mode’s input coupling efficiency, while the
square root of the factor g1g2=κ−κþ characterizes single-
photon strong coupling for asymmetric systems.
For single-port approaches, Eq. (18) yields dramatic

improvements over the MIM approach, as shown in Fig. 3;
this is entirely due to the force noise suppression in
Eq. (16), since ΓBA;n ∝ SFF and the quadratic coupling
strength is independent of L1. In systems operating away
from the single-port regime, our analysis identifies an
optimal input mirror transmission [47]

jt1j2opt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1ðL1 þ L2 þ jt2j2Þ

q
: ð19Þ

This further improves x2res as shown by the red curve
in Fig. 3.
Summary.—We propose an optomechanical setup that

dramatically reduces quantum radiation force noise without
affecting the quadratic dispersive coupling strength. For the
canonical membrane-cavity geometry, this is implemented
by simply relocating the membrane toward the mirror
with higher reflectivity. Our quantum analysis identifies
optimal configurations, and we demonstrate its advantage
in optical levitation and nondemolition phonon number

measurement. Owing to its ease of implementation and the
universal desire to control quantum noise, we expect this
work to immediately impact all optomechanical experi-
ments aiming to utilize quadratic dispersive coupling.
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