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We describe a simple protocol for the single-step generation of N-body entangling interactions between
trapped atomic ion qubits. We show that qubit state-dependent squeezing operations and displacement
forces on the collective atomic motion can generate full N-body interactions. Similar to the Mølmer-
Sørensen two-body Ising interaction at the core of most trapped ion quantum computers and simulators, the
proposed operation is relatively insensitive to the state of motion. We show how this N-body gate operation
allows for the single-step implementation of a family of N-bit gate operations such as the powerful
N-Toffoli gate, which flips a single qubit if and only if all other N-1 qubits are in a particular state.
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The central ingredient in a quantum computer is the
controllable quantum entanglement of its degrees of free-
dom, which for certain problems enables an exponential
speedup compared with classical algorithms. The qubit and
gate model of a quantum computer employs a universal set
of operations, such as 1-qubit rotations and 2-qubit con-
trolled-NOT gates [1]. While such few-qubit interactions are
sufficient for general computation, and can be used to
construct many-body entangled states [2–7], many-qubit
interactions can dramatically simplify quantum circuit
structures, speed up their execution, and extend the power
of quantum computer systems facing decoherence. For
example, direct N-qubit operations such as the N-qubit
Toffoli gate [8] are expected to find native use in quantum
adders and multipliers [9], Grover searches [10–12], error-
correction encoding [13–15], variational quantum algo-
rithms for calculating electronic properties of molecules
and materials [16–18], and simulations of nuclear structure
and lattice gauge theories [19–21].
Quantum gates based on many-body interactions have

been proposed in several leading physical quantum plat-
forms, from trapped ions [11,22–24] and neutral atoms [25–
29] to superconducting systems [28,30]. Here we concen-
trate on trapped ion qubits, which feature a high degree of
control, very long qubit coherence times, high quantum gate
fidelities, and dense qubit connectivity [31–33]. There have
been proposals to realize N-body interactions between
trapped ions using photons controlled by external optical
cavities [23] or phonons underlying the Coulomb-coupled
motion of the ions [11,22,24]. All of the above proposals
rely on either havingN or more steps, special auxiliary qubit
level structures, or exquisite control or pure-state prepara-
tion of the mediating phonons or photons.

Here we discover a simple single-step protocol for
N-body entangling interactions between trapped ion qubits
or effective spins. The operation is similar to the widely
used Mølmer-Sørensen (MS) two-body interaction [34–37],
which relies upon qubit state-dependent displacement
forces. We show instead, that state-dependent squeezing
forces can generate tunable N-body interactions between
the qubits. Such squeezing operations have previously been
considered in other proposals [38–41], and the context of
gates, spin-independent motional squeezing, has been used
to enhance MS gate performance, but none of these works
change the form of the underlying two-body spin interaction
[42–44]. We further present a limiting case of the protocol
and demonstrate the construction of the N-Toffoli gate in a
single step, and discuss other classes of N-body spin
Hamiltonians that can be similarly generated. As in the
MS protocol [11,34–37], this scheme does not rely on a pure
initial phonon state and can be relatively insensitive to
thermal motion.
The central idea behind trapped ion quantum gates is the

coupling between spins and motion (phonons) through spin-
dependent forces [22,34–37], as illustrated in Fig. 1. Owing
to the Coulomb interaction between the trapped ions, their
motion around equilibrium can be expressed by collective
normal modes of harmonic oscillation. We focus on the
coupling through a single phonon mode through a near-
resonance driving force, although generalization to multiple
modes is straightforward [45,46]. We represent the phonon
state of modem in a frame that rotates at the mode oscillation
frequency ωm using the phase-space position and momen-
tum operators x̂m ¼ x0mðâ†m þ âmÞ, p̂m ¼ ip0

mðâ†m − âmÞ.
Here, â†mðâmÞ are the bosonic creation (annihilation) oper-
ators and x0m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2Mωm

p
(p0

m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏMωm=2

p Þ are the
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zero-point spread in position (momentum) associated with
mode m, where M is the mass of a single ion. The spin-
motion coupling is parametrized by the Lamb-Dicke param-
eter ηim ¼ bimηm, where ηm ¼ kx0m, k is the effective wave
number of the field driving the motion [47], and bim is the
mode participation matrix between ion i and mode m, withP

i bimbin ¼ δnm and
P

m bimbjm ¼ δij.
The MS interaction arises by addressing multiple ions on

the first red and blue sidebands of modem from the spin-flip
carrier, with relative phase δϕi and zero-point Rabi rate
ηimΩiðtÞ for ion i. The carrier Rabi frequency ΩiðtÞ is
proportional to the drive strength, and we assume the motion
is confined within the Lamb-Dicke regime ðηimhâ†m þ
âmi ≪ 1Þ [47]. This spin-dependent force displaces the

phonon state in phase space by position ÂðtÞ ¼P
i AiðtÞσ̂ðiÞx and momentum B̂ðtÞ ¼ P

i BiðtÞσ̂ðiÞx , where

σ̂ðiÞx are the Pauli spin-flip operators (chosen uniformly along
x for convenience). The position and momentum displace-
ment amplitudes, scaled by 2x0m and 2p0

m, are AiðtÞ ¼
1
2
ηim

R
t
0 dt

0Ωi sin δϕi and BiðtÞ ¼ 1
2
ηim

R
t
0 dt

0Ωi cos δϕi [34].
Geometric phase gates such as the MS gate displace the

ions in closed phase-space loops [Figs. 1(c) and 1(d)]. By

the end of the gate at time T, the spin state of the ions is
decoupled from the phonons but has evolved according to
UMSðTÞ ¼ e−iΦ̂, with geometrical phase operator

Φ̂ ¼ −2
Z

T

0

B̂ðtÞ dÂðtÞ
dt

dt: ð1Þ

Because ÂðtÞ and B̂ðtÞ are linear in the spin operators, the
gate phase operator Φ̂ is quadratic in the spin operators
[49,50], limiting the standard MS gate to two-body (Ising)
interactions.
To generate an N-body spin interaction, we consider the

effect of spin-dependent motional squeezing on a phase
gate operation. Spin-dependent squeezing can be generated
by driving the second red and blue sidebands of a single
phonon mode m, as shown in Fig. 1(b) [47]. Setting the
zero-point second sideband Rabi rates equal to η2imΩi=2 and
the relative phase between the drives constant across the
chain (δϕi ¼ δϕ), the spin-motion interaction becomes

HS ¼
iℏ
4
ðeiδϕðtÞâ2m − e−iδϕðtÞâ†2m Þ

XN
i¼1

η2imΩiðtÞσ̂ðiÞϕi
: ð2Þ

(b)

(c)(a)

(d)

(e)

(f)

FIG. 1. Quantum phase gates with trapped ions. (a) A chain of trapped ions whose many-body spin state jψi is decoupled from the
motional state jnim of a single harmonic phonon mode m represented by vibrational integer index n ≥ 0. Ions are addressed with
bichromatic laser fields with carrier spin-flip Rabi rates Ωi. (b) Motional sideband transitions driven by the laser field. Tuning the
laser field on resonance with the first red and blue sideband transitions at frequency �ωm from the carrier [47] generates a spin-
dependent force which is mediated by simultaneous absorption and of emission phonons. Tuning the tones at the second red and blue
sidebands at �2ωm from the carrier generates spin-dependent squeezing by absorption and emission of pairs of phonons.
(c) Displacing the motion of mode m in a closed loop of phase space adds a phase Φ̂ to the quantum state that is given by the area of
the enclosed contour. (d) The MS gate using spin-dependent displacements results in a spin-dependent phase linear in the spin

operators σ̂ðiÞϕi
≡ σ̂ðiÞx cosϕi þ σ̂ðiÞy sinϕi of ion i. When applied to multiple ions, the resulting phase Φ̂ is thus quadratic in the spin

operators, corresponding to two-body MS interaction [37,48]. (e) Motional squeezing shrinks one direction in phase space but
expands the other to conserve the phase-space element area. (f) N-body entangling gate. Synchronized spin-dependent squeezing
(cross symbols) applied in between displacements produces squeezing of the motion along the momentum axis. The phase Φ̂ now
depends exponentially on the spins, and therefore contains products of N spin operators. The phase-space axes are displayed with
dimensionless units x̃m ¼ x̂m=ð2x0mÞ and p̃m ¼ p̂m=ð2p0

mÞ, with the convention ½x̃m; p̃m� ¼ i=2.
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Here σ̂ðiÞϕi
≡ σ̂ðiÞx cosϕi þ σ̂ðiÞy sinϕi is the Pauli spin-flip

operator of spin i set by the average phase ϕi of the ith
pair of drives. The phonon operator in Eq. (2) is the
generator of quadrature squeezing along the axis rotated by
δϕ=2 and antisqueezing along ðπ þ δϕÞ=2; we fix δϕðtÞ ¼
0 for convenience. Under the time-dependent Hamiltonian
HS of Eq. (2), the quantum state evolves by the spin-
dependent squeezing operator [38]:

Sξ̂ðtÞ ¼ e
1
2
ξ̂ðtÞðâ2m−â†2m Þ; ð3Þ

where the spin-dependent squeezing amplitude is

ξ̂ðtÞ ¼
X
i

ξiðtÞσ̂ðiÞϕi
¼ 1

2

X
i

σ̂ðiÞϕi
η2im

Z
t

0

ΩiðτÞdτ: ð4Þ

To illustrate the effect of squeezing on a phase gate
operation, we first consider an alternating sequence of spin-
dependent squeezing operations and displacement forces.
Specifically, we apply four discrete displacements along a
rectangular-shaped closed loop in phase space [37] inter-
spersed with four alternating squeezing operators applied at
the corners of the rectangle that ultimately decouple the
motion, as depicted in Fig. 1(f). The displacements in
position ÂðtxÞ and momentum B̂ðtpÞ are applied for times
tx and tp, respectively. Each squeezing operator is applied

for time tS with squeezing amplitude ξ̂ðtSÞ, for a total gate
time of T ¼ 4tS þ 2tx þ 2tp. The evolution operator of this
sequence is written as

UseqðTÞ ¼ S†
ξ̂
Dð−iB̂ÞSξ̂Dð−ÂÞS†

ξ̂
DðiB̂ÞSξ̂DðÂÞ ð5Þ

¼ Dð−iB̂eξ̂ÞDð−ÂÞDðiB̂eξ̂ÞDðÂÞ ð6Þ

¼ e−iΦ̂seq ; ð7Þ

where DðαÞ ¼ eαâ
†
m−α�âm is the displacement operator,

which moves the phonon state in phase space by
2x0mReðαÞ along the x̂m coordinate and by 2p0

mImðαÞ along
p̂m. The squeezing operations produce a net displacement
whose magnitude is dilated or contracted depending on the
spin, since S†

ξ̂
DðiB̂ÞSξ̂ ≡DðiB̂eξ̂Þ. Because ξ̂ is linear in

the spin operators from Eq. (4), the gate phase operator is
exponential in the spin operators:

Φ̂seq ¼ 2Â B̂ eξ̂ ¼ 2Â B̂
YN
i¼1

ð1 cosh ξi þ σ̂ðiÞϕi
sinh ξiÞ; ð8Þ

corresponding to an effective N-body Hamiltonian Heff ¼
ℏΦ̂seq=T. This remarkable construction features many-body
interaction terms, where the relative contribution of the

N-body term scales as
Q

i tanh ξi, which is sizeable
for ξi ∼ 1.
We now demonstrate the protocol with a few simple

gates that can be cast in the form of Eq. (8). First, we
consider a three-body gate between qubits i, j, and k
given by

UðijkÞ
seq ¼ exp ð−iφσ̂ðiÞϕi

σ̂ðjÞϕj
σ̂ðkÞϕk

Þ; ð9Þ

that can find usage in various applications, e.g., Refs.
[51–53]. This gate can be realized via spin-dependent

displacements of the i, j spins generating Â ¼ Aiσ̂
ðiÞ
ϕi

and

B̂ ¼ Bjσ̂
ðjÞ
ϕj

and squeezing by spin k, generating ξ̂ ¼ ξkσ̂
ðkÞ
ϕk
.

Equation (9) is then obtained for AiBj coshðξkÞ ¼ π=2 and
φ ¼ π tanh ξk. Similar to MS gates [48], maximally
entangled states can be prepared for φ ¼ π=4 which
remarkably correspond to squeezing of the oscillator mode
by about ξk ≈ 0.25 which is 10log10ðeξkÞ ≈ 1 dB.
As a second example, we consider simultaneous squeez-

ing of N spins but spin-independent displacements ÂðtxÞ ¼
A1 and B̂ðtpÞ ¼ B1 where A ¼ P

i AiðtÞ, B ¼ P
i BiðtÞ,

and 1 is the identity spin operator. We plot the phase-space
trajectories of this configuration in Fig. 2(a) for N ¼ 3

qubits, assuming a common squeezing amplitude ξi ¼ ξ̄.
The phase accumulated by the quantum state depends
exponentially on the number of spins pointing upward. In
the limit ξi ≫ 1, the phase operator in Eq. (8) becomes

Φ̂seq → 2ABeNξ̄
YN
i¼1

1

2
ð1þ σ̂ðiÞϕi

Þ: ð10Þ

Equation (10) is proportional to the projection operator on
the state j ↑ϕ � � � ↑ϕi, in which each spin points upward

along an eigenstate of σ̂ðiÞϕi
. This renders Useq into the

N-qubit controlled-phase gate, which appends the phase
factor expð−2iABeNξ̄Þ to the state j ↑ϕ � � � ↑ϕi. From here,

it is easy to construct theN-bit Toffoli gate TðnÞ
N , which flips

qubit n if and only if all other N − 1 qubits point up [8,22].
By setting 2ABeNξ̄ ¼ π and surrounding this operation

by one-qubit π=2 rotations on qubit n, we find TðnÞ
N ¼

RðnÞ
z ðπ=2ÞUseqR

ðnÞ
z ð−π=2Þ.

To characterize the action of the proposed unitary gate
Ũseq at finite squeezing amplitudes, we calculate its overlap
[54] with the ideal Toffoli gate as a function of the maximal
degree of squeezing of the oscillator mode, shown in
Fig. 2(b) for N ¼ 3, 4. We find that the overlap approaches
unity at high levels of squeezing. Notably, nonideal overlap
does not imply nonunitary evolution or an error, but rather
that the amplitudes of the spin terms in the actual unitary
gate [Eq. (8)] are not exactly all equal as in the ideal Toffoli
[Eq. (10)]. For some applications, e.g., variational quantum
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algorithms [56–58], it can usefully expand the native set of
gates even with moderate overlap.
We next generalize the sequential protocol in Eq. (5) and

consider the simultaneous application of displacements and
spin-dependent squeezing. Displacements are generated in
the interaction picture by the Hamiltonian

HD ¼ 2x0mα̂ðtÞp̂m − 2p0
mβ̂ðtÞx̂m; ð11Þ

where the forces α̂, β̂ are Hermitian, and their spin
dependence is determined by the underlying mechanism
from which they are produced. For example, fields pro-
duced by the trap’s electrodes couple to the ions’ charge

and can generate state-independent displacements [31],
whereas optical dipole forces [59–61] or magnetic fields
[62–64] can generate displacements whose amplitude Â is
linear in the spin operators.
The total Hamiltonian of the system is then given by

HðtÞ ¼ HSðtÞ þHDðtÞ, and the time-ordered evolution
operator can be represented by [65]

UðtÞ ¼ Sξ̂ðtÞUDðtÞ: ð12Þ

The operator UD describes the contribution of phase-space
displacements to the evolution and is generated by the
Hamiltonian

H0
D¼ S†

ξ̂
HDSξ̂ ¼ 2x0mα̂ðtÞeξ̂ðtÞp̂m−2p0

mβ̂ðtÞe−ξ̂ðtÞx̂m; ð13Þ

provided that α̂, β̂, and ξ̂ commute during the gate. Spin-
dependent squeezing thus renders the standard forces α̂, β̂
as nonlinear in the spin operators, via the exponential terms
e�ξ̂ðtÞ in Eq. (13). Yet, the evolution of UD is identical to
that of the MS gate under the simple transformation
α̂ → α̂eξ̂, β̂ → β̂e−ξ̂ and is therefore described by [48]

UDðtÞ ¼ e−iΦ̂DðiB̂ÞDðÂÞ: ð14Þ

The Hermitian phase-space displacements are given by

ÂðtÞ ¼
Z

t

0

eξ̂ðt0Þα̂ðt0Þdt0;

B̂ðtÞ ¼
Z

t

0

e−ξ̂ðt0Þβ̂ðt0Þdt0; ð15Þ

and the phase operator Φ̂ðTÞ by Eq. (1). Similar to the MS
gate, the operator U in Eq. (12) entangles the spin and
motional states during the gate operation. To realize a gate
that is independent of motion for all input states, we require
that at t ¼ T,

ÂðTÞ ¼ B̂ðTÞ ¼ ξ̂ðTÞ ¼ 0: ð16Þ

This decouples the motion (both in displacement and
squeezing) so that the net evolution operator contains only
spin operators, yielding UðTÞ ¼ e−iΦ̂. In the Supplemental
Material [66] we present several examples of effective
Hamiltonians that are generated by simultaneous application
of displacement and squeezing operations as well as a
protocol to generate the four-body gate exp ð−iðπ=4Þ
σ̂ðiÞϕi

σ̂ðjÞϕj
σ̂ðkÞϕk

σ̂ðlÞϕl
Þ, which can be used to simulate, e.g., the

plaquette operators in lattice-gauge theories or the Toric-
code Hamiltonian [14,21].
We now consider the speed of theN-body gate, especially

as it relies on second order motional sidebands, which in the
Lamb-Dicke limit are weak. For two-body MS gates

(a)

(b)

FIG. 2. Three-body entangling gates. (a) Phase-space evolution
for three spins, following the sequence of alternating spin-
independent displacements and spin-dependent squeezing oper-
ations [c.f. Fig. 1(f) and Eq. (5)]. Each ion squeezes (antisqueezes)
the momentum quadrature of the mth motional mode by a factor
of e−ξ̄ (eξ̄) if its spin points downward (upward). The state-
dependent phase-space area Φ̂seq accumulated in the evolution

generates the gate Useq ¼ e−iΦ̂seq with a maximal squeezing of the

oscillator mode by a factor of eNξ̄ when all spins are aligned.
(b) Overlap between the proposed many-body gate in Eq. (8)
(accompanied by one-qubit rotations on the third qubit as

described in the main text) and the N-Toffoli gate TðNÞ
N depending

on the maximal squeezing of phase-space coordinates in dB

[10 log10ðeNξ̄Þ] for N ¼ 3, 4. Inset: ideal Tð3Þ
3 operator in the

computational basis.
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through single modem [48], the gate time can be as short as
T ≈ π=ðbimηmΩÞ, taking a uniform Rabi frequency Ω over
the involved ions. The N-body gate presented here is based
on resonant spin-dependent squeezing operations with
additional duration of 4tS ≈ 8ξ̄=ðΩb2imη2mÞ. We estimate
these parameters for a chain of 4 Yb ions in a trap with
radial frequency of 2π × 3 MHz and ηm ≈ 0.11, corre-
sponding to coherent driving by counterpropagating
355 nm light. The action of this light on the second
sideband with a typical value ofΩ ¼ 2π × 1 MHz squeezes
the oscillator mode at the rate of about dξ=dt ≈ 10 ms−1 per
ion (which corresponds to 40 dB=ms), for a typical mode
participation factor of bim ¼ 0.5. We focus on low values of
ξ as highly squeezed physical systems may become more
susceptible to experimental imperfections. For the fully
entangling 3-qubit gate in Eq. (9) with φ ¼ π=4, we
estimate a typical squeezing time of tS ≈ 25 μs, and a total
gate time of about T ≈ 130 μs. This duration is similar to
that of other practically realized gates [67–69], and is
considerably shorter than the motional coherence time of
the oscillator (typically 10–100 ms [44,68]), which is
expected to be the limiting factor for the gate performance.
Using low-mass 9Beþ ions with η ≈ 0.25 [70] is expected to
shorten the gate time about fivefold. For longer chains,
scaling of the mode participation factors by bim ∼ 1=

ffiffiffiffi
N

p
yields a linear scaling of the gate duration inN, although the
gates can be tailored to be faster for certain subsets of ions
by using more localized modes.
Our analysis focuses on the interactions generated via

resonant coupling with a single phonon mode. However,
spin-dependent squeezing through second sidebands can
also drive off-resonant sidebands on pairs of modes μ, ν
detuned by Δμν ¼ 2ωm − ωμ − ων. This results in multi-
mode squeezing in a potentially dense sideband spectrum,
with the possibility of near degeneracies. These off-
resonant couplings can be suppressed by judiciously
shaping the axial ion trap potential and choosing the target
mode so that the unwanted sidebands are sufficiently far
from the desired squeezing sideband. For example, the
lowest frequency (zigzag) radial normal mode is relatively
isolated, and the resulting off-resonant coupling with the
nearest second sideband detuned Δμm from the drive scales
with rate 1

4

P
i η

2
iμη

2
imΩ2

i =Δμm, while the desired squeezing
interaction rate scales as η2mΩ=ð2NÞ; the ratio reads as
ϵ ¼ η2mΩ=ð2NΔμmÞ where the excitation of phonons scales
as ϵ2. For the four ion configuration with a lowest axial
frequency of 900 kHz, we find Δ ≈ 160 kHz for the lowest
frequency mode and ϵ2 ≲ 0.01. By shaping the mode
spectrum such that Δμm ∼ B=N for instance, where B is
the bandwidth of modes, we find that for fixed Ω, ϵ does
not grow with N. Furthermore, it is possible to apply pulse-
shaping techniques to control all multimode squeezing
operations for the N-body gate while decoupling all

motional modes, exactly as has been demonstrated for
multimode MS gates [45,46].
We finally note that the emergence of N-body inter-

actions discovered here can be seen from the expanded
Lie algebra generated by the combined squeezing and
displacement Hamiltonians. This is evident from the
Magnus expansion representation of the evolution oper-
ator [71], a sequence of nested commutators of the
Hamiltonian with itself. For the MS interaction, the series
terminates after the second term because ½x̂m; p̂m� ¼ iℏ.
Here instead, the series does not terminate because for
instance ½ðâ2m − â†2m Þσ̂xðiÞ; x̂m� ¼ 2x̂mσ̂xðiÞ, thus carrying
products of further spin operators along in the expansion.
This interaction thus represents a new degree of freedom
in controlling trapped ion quantum states, and may
significantly expand the expression of trapped ion quan-
tum logic operations.
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